Machine Learning Methods for Causal Effects

Susan Athey, Stanford University
Guido Imbens, Stanford University
Introduction
<table>
<thead>
<tr>
<th>Supervised Machine Learning v. Econometrics/Statistics Lit. on Causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised ML</td>
</tr>
<tr>
<td>- Well-developed and widely used nonparametric prediction methods that work well with big data</td>
</tr>
<tr>
<td>- Used in technology companies, computer science, statistics, genomics, neuroscience, etc.</td>
</tr>
<tr>
<td>- Rapidly growing in influence</td>
</tr>
<tr>
<td>- Cross-validation for model selection</td>
</tr>
<tr>
<td>- Focus on prediction and applications of prediction</td>
</tr>
<tr>
<td>- Weaknesses</td>
</tr>
<tr>
<td>- Causality (with notable exceptions, including those attending this conference)</td>
</tr>
<tr>
<td>Econometrics/Soc Sci/Statistics</td>
</tr>
<tr>
<td>- Formal theory of causality</td>
</tr>
<tr>
<td>- Potential outcomes method (Rubin) maps onto economic approaches</td>
</tr>
<tr>
<td>- “Structural models” that predict what happens when world changes</td>
</tr>
<tr>
<td>- Used for auctions, anti-trust (e.g. mergers) and business decision-making (e.g. pricing)</td>
</tr>
<tr>
<td>- Well-developed and widely used tools for estimation and inference of causal effects in exp. and observational studies</td>
</tr>
<tr>
<td>- Used by social science, policy-makers, development organizations, medicine, business, experimentation</td>
</tr>
<tr>
<td>Weaknesses</td>
</tr>
<tr>
<td>- Non-parametric approaches fail with many covariates</td>
</tr>
<tr>
<td>- Model selection unprincipled</td>
</tr>
</tbody>
</table>
A Research Agenda

Problems

- Many problems in social sciences entail a combination of prediction and causal inference.
- Existing ML approaches to estimation, model selection and robustness do not directly apply to the problem of estimating causal parameters.
- Inference more challenging for some ML methods.

Proposals

- Formally model the distinction between causal and predictive parts of the model and treat them differently for both estimation and inference.
- Develop new estimation methods that combine ML approaches for prediction component of models with causal approaches.
 - Today’s paper, Athey-Imbens (WIP).
- Develop new approaches to cross-validation optimized for causal inference.
 - Today’s paper, Athey-Imbens (WIP).
- Develop robustness measures for causal parameters inspired by ML.
 - Athey-Imbens (AER 2015).
Model for Causal Inference

- For causal questions, we wish to know what would happen if a policy-maker changes a policy
 - Potential outcomes notation:
 - $Y_i(w)$ is the outcome unit i would have if assigned treatment w
 - For binary treatment, treatment effect is $\tau_i = Y_i(1) - Y_i(0)$
 - Administer a drug, change minimum wage law, raise a price
 - Function of interest: mapping from alt. CF policies to outcomes
 - Holland: Fundamental Problem of Causal Inference
 - We do not see the same units at the same time with alt. CF policies

- Units of study typically have fixed attributes x_i
 - These would not change with alternative policies
 - E.g. we don’t contemplate moving coastal states inland when we change minimum wage policy

Approach
- Formally define a population of interest and how sampling occurs
- Define an estimand that answers the economic question using these objects (effects versus attributes)
- Specify: “What data are missing, and how is the difference between your estimator and the estimand uncertain?”
 - Given data on 50 states from 2003, we know with certainty the difference in average income between coast and interior
 - Although we could contemplate using data from 2003 to estimate the 2004, difference this depends on serial correlation within states, no direct info in cross-section

Application to Effects v. Attributes in Regression Models
- Sampling: Sample/population does not go to zero, finite sample
- Causal effects have missing data: don’t observe both treatments for any unit
- Huber-White robust standard errors are conservative but best feasible estimate for causal effects
- Standard errors on fixed attributes may be much smaller if sample is large relative to population
 - Conventional approaches take into account sampling variance that should not be there
Robustness of Causal Estimates
Athey and Imbens (AER, 2015)

- General nonlinear models/estimation methods
- Causal effect is defined as a function of model parameters
 - Simple case with binary treatment, effect is $\tau_i = Y_i(1) - Y_i(0)$
- Consider other variables/features as “attributes”
- Proposed metric for robustness:
 - Use a series of “tree” models to partition the sample by attributes
 - Simple case: take each attribute one by one
 - Re-estimate model within each partition
 - For each tree, calculate overall sample average effect as a weighted average of effects within each partition
 - This yields a set of sample average effects
 - Propose the standard deviation of effects as robustness measure
- 4 Applications:
 - Robustness measure better for randomized experiments, worse in observational studies
Machine Learning Methods for Estimating Heterogeneous Causal Effects

Susan Athey and Guido Imbens
Motivation I: Experiments and Data-Mining

- Concerns about ex-post “data-mining”
 - In medicine, scholars required to pre-specify analysis plan
 - In economic field experiments, calls for similar protocols
- But how is researcher to predict all forms of heterogeneity in an environment with many covariates?
- Goal:
 - Allow researcher to specify set of potential covariates
 - Data-driven search for heterogeneity in causal effects with valid standard errors
Motivation II: Treatment Effect Heterogeneity for Policy

- Estimate of treatment effect heterogeneity needed for optimal decision-making
- This paper focuses on estimating treatment effect as function of attributes directly, not optimized for choosing optimal policy in a given setting
- This “structural” function can be used in future decision-making by policy-makers without the need for customized analysis
Preview

- Distinguish between causal effects and attributes
- Estimate treatment effect heterogeneity:
 - Introduce estimation approaches that combine ML prediction & causal inference tools
- Introduce and analyze new cross-validation approaches for causal inference
- Inference on estimated treatment effects in subpopulations
 - Enabling post-experiment data-mining
Regression Trees for Prediction

Data
- Outcomes Y_i, attributes X_i
- Support of X_i is \mathcal{X}.
- Have training sample with independent obs.
- Want to predict on new sample
- Ex: Predict how many clicks a link will receive if placed in the first position on a particular search query

Build a “tree”:
- Partition of \mathcal{X} into “leaves” \mathcal{X}_j
- Predict Y conditional on realization of X in each region \mathcal{X}_j using the sample mean in that region
- Go through variables and leaves and decide whether and where to split leaves (creating a finer partition) using in-sample goodness of fit criterion
- Select tree complexity using cross-validation based on prediction quality
Regression Tree Illustration

Outcome: CTR for position 1 in subsample of Bing search queries from 2012 (sample is non-representative)
Regression Trees for Prediction: Components

1. Model and Estimation
 A. Model type: Tree structure
 B. Estimator \hat{Y}_i: sample mean of Y_i within leaf
 C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)
 A. In-sample Goodness-of-fit function:
 \[Q^{is} = -\text{MSE} \text{ (Mean Squared Error)} = -\frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_i - Y_i)^2 \]
 A. Structure and use of criterion
 i. Criterion: $Q^{crit} = Q^{is} - \lambda \times \# \text{ leaves}$
 ii. Select member of set of candidate estimators that maximizes Q^{crit}, given λ

3. Cross-validation approach
 A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Q^{os}.
 B. Out-of-sample Goodness-of-fit function: $Q^{os} = -\text{MSE}$
Using Trees to Estimate Causal Effects

Model:

\[Y_i = Y_i(W_i) = \begin{cases} Y_i(1) & \text{if } W_i = 1, \\ Y_i(0) & \text{otherwise}. \end{cases} \]

- Suppose random assignment of \(W_i \)

- Want to predict individual \(i \)’s treatment effect
 - \(\tau_i = Y_i(1) - Y_i(0) \)
 - This is not observed for any individual
 - Not clear how to apply standard machine learning tools

- Let

\[
\mu(w, x) = \mathbb{E}[Y_i|W_i = w, X_i = x] \\
\tau(x) = \mu(1, x) - \mu(0, x)
\]
Using Trees to Estimate Causal Effects

\[\mu(w, x) = \mathbb{E}[Y_i | W_i = w, X_i = x] \]
\[\tau(x) = \mu(1, x) - \mu(0, x) \]

- **Approach 1:** Analyze two groups separately
 - Estimate \(\hat{\mu}(1, x) \) using dataset where \(W_i = 1 \)
 - Estimate \(\hat{\mu}(0, x) \) using dataset where \(W_i = 0 \)
 - Use propensity score weighting (PSW) if needed
 - Do within-group cross-validation to choose tuning parameters
 - Construct prediction using
 \[\hat{\mu}(1, x) - \hat{\mu}(0, x) \]

- **Approach 2:** Estimate \(\mu(w, x) \) using tree including both covariates
 - Include PS as attribute if needed
 - Choose tuning parameters as usual
 - Construct prediction using
 \[\hat{\mu}(1, x) - \hat{\mu}(0, x) \]
 - Estimate is zero for \(x \) where tree does not split on \(w \)

- **Observations**
 - Estimation and cross-validation not optimized for goal
 - Lots of segments in Approach 1: combining two distinct ways to partition the data

- **Problems with these approaches**
 1. Approaches not tailored to the goal of estimating treatment effects
 2. How do you evaluate goodness of fit for tree splitting and cross-validation?
 - \(\tau_i = Y_i(1) - Y_i(0) \) is not observed and thus you don’t have ground truth for any unit
Literature

Approaches in the spirit of single tree and two trees

- Beygelzimer and Langford (2009)
 - Analogous to “two trees” approach with multiple treatments; construct optimal policy

- Dudick, Langford, and Li (2011)
 - Combine inverse propensity score method with “direct methods” (analogous to single tree approach) to estimate optimal policy

 - Estimate $\mu(w, x)$ using random forests, define $\hat{t}_i = \hat{\mu}(1, X_i) - \hat{\mu}(0, X_i)$, and do trees on \hat{t}_i.

- Imai and Ratkovic (2013)
 - In context of randomized experiment, estimate $\mu(w, x)$ using lasso type methods, and then $\hat{t}(x) = \hat{\mu}(1, x) - \hat{\mu}(0, x)$.

Estimating treatment effects directly at leaves of trees

- Su, Tsai, Wang, Nickerson, Li (2009)
 - Do regular tree, but split if the t-stat for the treatment effect difference is large, rather than when the change in prediction error is large.

- Zeileis, Hothorn, and Hornick (2005)
 - “Model-based recursive partitioning”: estimate a model at the leaves of a tree. In-sample splits based on prediction error, do not focus on out of sample cross-validation for tuning.

- None of these explore cross-validation based on treatment effect.
Proposed Approach 3: Transform the Outcome

- Suppose we have 50-50 randomization of treatment/control
 - Let $Y_i^* = \begin{cases} 2Y_i & \text{if } W_i = 1 \\ -2Y_i & \text{if } W_i = 0 \end{cases}$
 - Then $E[Y_i^*] = 2 \cdot \left(\frac{1}{2} E[Y_i(1)] - \frac{1}{2} E[Y_i(0)] \right) = E[\tau_i]$

- Suppose treatment with probability p_i
 - Let $Y_i^* = \frac{W_i-p}{p(1-p)} Y_i = \begin{cases} \frac{1}{p}Y_i & \text{if } W_i = 1 \\ -\frac{1}{1-p}Y_i & \text{if } W_i = 0 \end{cases}$
 - Then $E[Y_i^*] = \left(p \frac{1}{p} E[Y_i(1)] - (1 - p) \frac{1}{1-p} E[Y_i(0)] \right) = E[\tau_i]$

- Selection on observables or stratified experiment
 - Let $Y_i^* = \frac{W_i-p(X_i)}{p(X_i)(1-p(X_i))} Y_i$
 - Estimate $\hat{p}(x)$ using traditional methods
Causal Trees:
Approach 3 (Conventional Tree, Transformed Outcome)

1. Model and Estimation
 A. Model type: Tree structure
 B. Estimator \hat{t}_{i}^{*}: sample mean of Y_{i}^{*} within leaf
 C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)
 A. In-sample Goodness-of-fit function:
 $$Q^{is} = -\text{MSE (Mean Squared Error)} = -\frac{1}{N}\sum_{i=1}^{N}(\hat{t}_{i}^{*} - Y_{i}^{*})^2$$
 A. Structure and use of criterion
 i. Criterion: $Q^{crit} = Q^{is} - \lambda \times \# \text{ leaves}$
 ii. Select member of set of candidate estimators that maximizes Q^{crit}, given λ

3. Cross-validation approach
 A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Q^{os}.
 B. Out-of-sample Goodness-of-fit function: $Q^{os} = -\text{MSE}$
Critique of Proposed Approach 3:
Transform the Outcome

\[Y_i^* = \frac{W_i - p}{p(1-p)} Y_i = \begin{cases} \frac{1}{p} Y_i & \text{if } W_i = 1 \\ -\frac{1}{1-p} Y_i & \text{if } W_i = 0 \end{cases} \]

- Within a leaf, sample average of \(Y_i^* \) is not most efficient estimator of treatment effect
- The proportion of treated units within the leaf is not the same as the overall sample proportion
- This motivates Approach 4: use sample average treatment effect in the leaf
Causal Trees:
Approach 4 (Causal Tree, Version 1)

1. Model and Estimation
 A. Model type: Tree structure
 B. Estimator \hat{t}_i^{CT}: sample average treatment effect within leaf (w/ PSW)
 C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. Criterion function (for fixed tuning parameter λ)
 A. In-sample Goodness-of-fit function:
 $$Q^{is} = -\text{MSE (Mean Squared Error)} = -\frac{1}{N} \sum_{i=1}^{N} (\hat{t}_i^{CT} - Y_i^*)^2$$
 A. Structure and use of criterion
 i. Criterion: $Q^{crit} = Q^{is} - \lambda \times \# \text{ leaves}$
 ii. Select member of set of candidate estimators that maximizes Q^{crit}, given λ

3. Cross-validation approach
 A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Q^{os}.
 B. Out-of-sample Goodness-of-fit function: $Q^{os} = -\text{MSE}$
Designing a Goodness of Fit Measure: What are other alternatives?

- Goodness of fit (infeasible):
 \[Q \text{\text{infeas}}(\hat{\tau}) = -\mathbb{E}[(\tau_i - \hat{\tau}(X_i))^2] \]

- Expanding, we have:
 \[Q \text{\text{infeas}}(\hat{\tau}) = -\mathbb{E}[\tau_i^2] - \mathbb{E}[\hat{\tau}^2(X_i)] + 2 \mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i] \]
 - First term doesn’t depend on \(\hat{\tau} \), thus irrelevant for comparing candidate estimators
 - Second term is straightforward to calculate given \(\hat{\tau} \).
 - Third expectation:
 \[\mathbb{E}[\hat{\tau}(X_i) \cdot \tau_i] = \mathbb{E}[\hat{\tau}(X_i) \cdot Y_i(1) - \hat{\tau}(X_i) \cdot Y_i(0)] \]

- Effect of treatment on (alt) transformed outcome: \(\tilde{Y}_i = Y_i \cdot \hat{\tau}(X_i) \).
 - Can be estimated. (Unusual to estimate fit measure.)
 - One alternative: matching. For computational reasons, we currently only use this to compare different overall approaches.
Estimating the In Sample Goodness of Fit Measure

- For tree splitting/comparing nested trees:
 \[
 \mathbb{E}[\hat{t}(X_i) \cdot \tau_i] = \sum_j \mathbb{E}[\hat{t}(X_i) \cdot \tau_i | X_i \in S_j] \Pr(X_i \in S_j)
 \]
 To estimate this, use fact that \(\hat{t}(x_i)\) is constant within a segment, and is an estimate of \(\mathbb{E}[\tau|X_i \in s_j(x_i)]\):
 \[
 = \frac{1}{N} \sum_i \hat{\tau}^2(x_i)
 \]

- This motivates \(Q^{is,sq}(\hat{t}) = \frac{1}{N} \sum_i \hat{\tau}^2(x_i)\)

- Rewards variance of estimator (all candidates constrained to have same mean, and accurate mean on every segment)

- In expectation, but not in finite samples, compares alternative estimators the same as using \(-\frac{1}{N} \sum_{i=1}^N (\hat{\tau}_i^{CT} - Y^*_i)^2\)
Causal Trees:
Approach 5 (Modified Causal Tree)

1. **Model and Estimation**

 A. Model type: Tree structure

 B. Estimator $\hat{\tau}_{i}^{MCT}$: sample average treatment effect within leaf

 C. Set of candidate estimators C: correspond to different specifications of how tree is split

2. **Criterion function (for fixed tuning parameter λ)**

 A. In-sample Goodness-of-fit function:
 \[
 Q^{is} = -\frac{1}{N} \sum_{i=1}^{N} (\hat{\tau}_{i}^{MCT})^2
 \]

 A. Structure and use of criterion

 i. **Criterion:** $Q^{crit} = Q^{is} - \lambda \times \# \text{ leaves}$

 ii. Select member of set of candidate estimators that maximizes Q^{crit}, given λ

3. **Cross-validation approach**

 A. Approach: Cross-validation on grid of tuning parameters. Select tuning parameter λ with highest Out-of-sample Goodness-of-Fit Q^{os}.

 B. Out-of-sample Goodness-of-fit function:
 \[
 Q^{os} = -\text{MSE} = -\frac{1}{N} \sum_{i=1}^{N} (\hat{\tau}_{i}^{MCT} - Y_i^*)^2
 \]
Comparing “Standard” and Causal Approaches

- They will be more similar
 - If treatment effects and levels are highly correlated

- Two-tree approach
 - Will do poorly if there is a lot of heterogeneity in levels that is unrelated to treatment effects
 - Will do well in certain specific circumstances, e.g.
 - Control outcomes constant in covariates
 - Treatment outcomes vary with covariates

- How to compare approaches?
 1. Oracle (simulations)
 2. Transformed outcome goodness of fit
 3. Use matching to estimate infeasible goodness of fit
Inference

- **Attractive feature of trees:**
 - Can easily separate tree construction from treatment effect estimation
 - Tree constructed on training sample is independent of sampling variation in the test sample
 - Holding tree from training sample fixed, can use standard methods to conduct inference within each leaf of the tree on test sample
 - Can use any valid method for treatment effect estimation, not just the methods used in training
 - For observational studies, literature (e.g. Hirano, Imbens and Ridder (2003)) requires additional conditions for inference
 - E.g. leaf size must grow with population
Problem: Treatment Effect Heterogeneity in Estimating Position Effects in Search

- Queries highly heterogeneous
 - Tens of millions of unique search phrases each month
 - Query mix changes month to month for a variety of reasons
 - Behavior conditional on query is fairly stable

- Desire for segments.
 - Want to understand heterogeneity and make decisions based on it
 - “Tune” algorithms separately by segment
 - Want to predict outcomes if query mix changes
 - For example, bring on new syndication partner with more queries of a certain type
Search Experiment Tree: Effect of Demoting Top Link (Test Sample Effects)

Some data excluded with prob p(x): proportions do not match population

Highly navigational queries excluded
Use Test Sample for Segment Means & Std Errors to Avoid Bias

<table>
<thead>
<tr>
<th>Treatment Effect</th>
<th>Standard Error</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.124</td>
<td>0.004</td>
<td>0.202</td>
</tr>
<tr>
<td>-0.134</td>
<td>0.010</td>
<td>0.025</td>
</tr>
<tr>
<td>-0.010</td>
<td>0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.215</td>
<td>0.013</td>
<td>0.021</td>
</tr>
<tr>
<td>-0.145</td>
<td>0.003</td>
<td>0.305</td>
</tr>
<tr>
<td>-0.111</td>
<td>0.006</td>
<td>0.063</td>
</tr>
<tr>
<td>-0.230</td>
<td>0.028</td>
<td>0.004</td>
</tr>
<tr>
<td>-0.058</td>
<td>0.010</td>
<td>0.017</td>
</tr>
<tr>
<td>-0.087</td>
<td>0.031</td>
<td>0.003</td>
</tr>
<tr>
<td>-0.151</td>
<td>0.005</td>
<td>0.119</td>
</tr>
<tr>
<td>-0.174</td>
<td>0.024</td>
<td>0.005</td>
</tr>
<tr>
<td>0.026</td>
<td>0.127</td>
<td>0.000</td>
</tr>
<tr>
<td>-0.030</td>
<td>0.026</td>
<td>0.002</td>
</tr>
<tr>
<td>-0.135</td>
<td>0.014</td>
<td>0.011</td>
</tr>
<tr>
<td>-0.159</td>
<td>0.055</td>
<td>0.001</td>
</tr>
<tr>
<td>-0.014</td>
<td>0.026</td>
<td>0.001</td>
</tr>
<tr>
<td>-0.081</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.045</td>
<td>0.023</td>
<td>0.001</td>
</tr>
<tr>
<td>-0.169</td>
<td>0.016</td>
<td>0.011</td>
</tr>
<tr>
<td>-0.207</td>
<td>0.030</td>
<td>0.003</td>
</tr>
<tr>
<td>-0.096</td>
<td>0.011</td>
<td>0.023</td>
</tr>
<tr>
<td>-0.096</td>
<td>0.005</td>
<td>0.069</td>
</tr>
<tr>
<td>-0.139</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.131</td>
<td>0.006</td>
<td>0.078</td>
</tr>
</tbody>
</table>

Variance of estimated treatment effects in training sample 2.5 times that in test sample

<table>
<thead>
<tr>
<th>Treatment Effect</th>
<th>Standard Error</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.124</td>
<td>0.004</td>
<td>0.202</td>
</tr>
<tr>
<td>-0.135</td>
<td>0.010</td>
<td>0.025</td>
</tr>
<tr>
<td>-0.007</td>
<td>0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.247</td>
<td>0.013</td>
<td>0.022</td>
</tr>
<tr>
<td>-0.148</td>
<td>0.003</td>
<td>0.304</td>
</tr>
<tr>
<td>-0.110</td>
<td>0.006</td>
<td>0.064</td>
</tr>
<tr>
<td>-0.268</td>
<td>0.028</td>
<td>0.004</td>
</tr>
<tr>
<td>-0.032</td>
<td>0.010</td>
<td>0.117</td>
</tr>
<tr>
<td>-0.056</td>
<td>0.029</td>
<td>0.003</td>
</tr>
<tr>
<td>-0.169</td>
<td>0.005</td>
<td>0.119</td>
</tr>
<tr>
<td>-0.168</td>
<td>0.024</td>
<td>0.005</td>
</tr>
<tr>
<td>0.026</td>
<td>0.127</td>
<td>0.000</td>
</tr>
<tr>
<td>-0.009</td>
<td>0.025</td>
<td>0.002</td>
</tr>
<tr>
<td>-0.114</td>
<td>0.015</td>
<td>0.010</td>
</tr>
<tr>
<td>-0.143</td>
<td>0.053</td>
<td>0.001</td>
</tr>
<tr>
<td>0.008</td>
<td>0.050</td>
<td>0.000</td>
</tr>
<tr>
<td>-0.050</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.045</td>
<td>0.021</td>
<td>0.001</td>
</tr>
<tr>
<td>-0.200</td>
<td>0.016</td>
<td>0.011</td>
</tr>
<tr>
<td>-0.279</td>
<td>0.031</td>
<td>0.003</td>
</tr>
<tr>
<td>-0.083</td>
<td>0.011</td>
<td>0.022</td>
</tr>
<tr>
<td>-0.096</td>
<td>0.005</td>
<td>0.070</td>
</tr>
<tr>
<td>-0.159</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>-0.131</td>
<td>0.006</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Conclusions

- **Key to approach**
 - Distinguish between causal and predictive parts of model

- **“Best of Both Worlds”**
 - Combining very well established tools from different literatures
 - Systematic model selection with many covariates
 - Optimized for problem of causal effects
 - In terms of tradeoff between granular prediction and overfitting
 - With valid inference
 - Easy to communicate method and interpret results
 - Output is a partition of sample, treatment effects and standard errors

- **Important application**
 - Data-mining for heterogeneous effects in randomized experiments