MARSTON TAYLOR BOGERT
1868—1954

A Biographical Memoir by
LOUIS P. HAMMETT

Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences.

Biographical Memoir

Copyright 1974
National Academy of Sciences
Washington D.C.
MARSTON TAYLOR BOGERT

April 18, 1868–March 21, 1954

BY LOUIS P. HAMMETT

MARSTON TAYLOR BOGERT was born in Flushing, New York, on April 18, 1868, and died in New York City on March 21, 1954. His long and intensely active professional life was connected intimately and continuously with Columbia University, with the development of organized activity in chemistry in the United States, and with the fostering of international cooperation in science.

Bogert entered Columbia College in 1886, having graduated from the Flushing Institute, a well-known private school. His undergraduate record was remarkable. It included the grade of A in every course; the award of honors in German, Spanish, Italian, botany, and geology; the captainship of a famous freshman crew; the college championship in tennis; honors in football, shot-putting, and pole vaulting; membership as a flute player in the college orchestra; and the presidency of his class in the sophomore and in the senior years.

After Bogert was graduated with the degree of A.B. in 1890 he entered the new Columbia School of Mines in the course of analytical and applied chemistry. His academic record continued to be distinguished, and he obtained the degree of Ph.B. in 1894. When, during this curriculum, it became time for him and seven or eight classmates to take a course in organic chemistry, C. E. Colby, who had taught the course as adjunct
professor, became ill, and the school was unable to find a replacement. Consequently, the students were told to teach themselves, and Bogert, who during his career published several hundred scientific papers in organic chemistry, never had any formal instruction in the subject. Neither did he follow the fashion of a trip abroad for a German doctorate. Instead he accepted an appointment to give instruction in organic chemistry at Columbia and advanced there through various grades, attaining the full professorship in 1904. He continued in that position with the title of Professor of Organic Chemistry until he retired in 1939 as Emeritus Professor of Organic Chemistry in Residence.

Bogert arrived at Columbia at a time when, under the leadership of Burgess and of Butler, a small college was in the early stages of an expansion that led to a great university, and his abilities found their opportunity in that expansion. The graduate faculty of pure science had been established in 1892, and Bogert's first research publication, "A New Synthesis in the Quinazoline Group" (with A. H. Gotthelf), appeared in the Journal of the American Chemical Society in March of 1900. From then on, brilliant young men flocked to his laboratory to be trained for careers in research and went forth to assume positions of importance in academic life and in the rapidly expanding chemical industry. It is a revealing comment on the times and the place that, while Bogert remained firm in his attachment to synthetic organic chemistry, many of his students refused to be typecast by their doctorates in that field: H. T. Beans became a pioneer in the revolution in instruction in analytical chemistry; J. M. Nelson initiated important advances in what later came to be called physical organic chemistry and in biological chemistry; M. Heidelberger became one of the world's great microbiologists; F. D. Snell founded one of this country's leading chemical consulting firms; G. Scatchard be-
came a distinguished physical chemist. These men were self-taught in their fields as Bogert had been in his.

Bogert was a polished lecturer, and his teaching evidenced clearly his lifelong love affair with the intricacies of structural organic chemistry. For Columbia University he carried the usual burdens of membership on committees, and he served on the University Council in 1908–1911 and 1916–1919. He was a charter member of the Columbia chapters of Sigma Xi and of Phi Lambda Upsilon. Columbia recognized his accomplishments and his services to the university by an honorary Sc.D. degree in 1929, by the Egleston Medal in 1939, and by the Charles Frederick Chandler Medal in 1949. He had received an honorary L.L.D. degree from Clark University in 1909.

Bogert's professional career accompanied a phenomenal growth in chemistry in the United States, and he was an active participant in the parallel development of professional organizations. The American Chemical Society, which now numbers more than 100,000 members, had about one percent of that membership in the mid-nineties when Bogert began to take an active part in its affairs. In 1901 he was chairman of the New York section, and in 1907 and 1908 he was president of the national Society. In the latter position he introduced an organizational reform that established divisions of the Society, each representing a major portion of the field of chemical science and technology. This averted a threatened schism that would have set up separate societies for applied and for pure chemists. He was awarded the Nichols Medal of the New York section in 1905 and the Priestley Medal of the national Society in 1938.

Bogert was elected to the National Academy of Sciences in 1916. He led in the establishment of the Division of Chemistry and Chemical Technology of the National Research Council in 1917 and was its first chairman. In 1898 he became one of one hundred fifty-four charter members of the Chemists' Club of New
York, which has played an important role in the chemical life of metropolitan New York. The dining room of the club where Bogert presided at so many dinner meetings over the years has been named the Bogert Room in his honor. He was a member of the American Philosophical Society, the American Academy of Arts and Sciences, the Washington Academy of Sciences, the National Institute of Social Sciences, the American Association for the Advancement of Science, and the American Association of University Professors. He was a Fellow of the Chemical Society (London) and a Gold Medalist of the American Institute of Chemists; a member of Phi Beta Kappa, of Sigma Xi, and of Phi Lambda Upsilon; and a member of the Century Association, the Cosmos Club, the Royal Societies Club (London), the Hunters' Fraternity of America, and the Chevy Chase Club.

During the First World War Bogert served as a consultant to many government agencies and as a member of numerous boards and committees. He was commissioned lieutenant colonel in the U.S. Army in March 1918 and promoted to colonel in the Chemical Warfare Service in July of that year. He was honorably discharged from the army in May 1919. For the rest of his life his friends referred to him as Colonel, a form of address that he much enjoyed.

From 1900 on, Bogert had been active in the New York section of the British Society of Chemical Industry, and in 1912-1913 he was president of the parent Society. He also lent his support to the New York section of the French Société de Chimie Industrielle. In 1927 he was appointed to give lectures at the Charles University in Prague as the first Carnegie Professor of International Relations. While in Czechoslovakia, he was awarded honorary degrees by the Charles University and by the University of Bratislava and was made a Commander of the Order of the White Lion of Czechoslovakia. Following his participation over many years in international conferences on chemistry, he was elected president of the International Union
of Pure and Applied Chemistry in 1938. His devotion and tact were in large measure responsible for the successful re-establishment of that Union after the Second World War, and he himself felt that that was one of his most valuable accomplishments.

The first Bogert to come to this country arrived from Holland in 1663, the year before the British took New Amsterdam from the Dutch. Many of his descendents were prominent citizens of New York, and Marston's father, Henry Augustine Bogert, was a well-known lawyer in that city. He was also a graduate of Columbia College, as were Marston's three brothers. In 1893 Marston married Charlotte E. Hoogland. They had two daughters, Annette H. and Elsie B. The Bogerts's homes in New York City and at Belgrade Lakes, Maine, were happy and friendly ones. Bogert was an active participant in the affairs of the Reformed church.

Bogert was distinguished in appearance, striking in personality, and gifted with wit and eloquence. He was the perfect presiding officer at all public occasions and was constantly in demand for that function.

1898

1900
1901
With L. Boroschek. Some experiments with the mononitroortho-

1902
With D. C. Eccles. Production of the imides of succinic and glutaric
acids by the partial hydration of the corresponding nitriles. J.
With W. F. Hand. Synthesis of alkylketodihydroquinazolines from

1903
Normal heptyl thiocyanate and some new alkyl esters of dithio-
With H. C. Breneman and W. F. Hand. Synthesis of alkylthioketo-
dihydroquinazolines from anthranilic nitrile. J. Am. Chem.
With L. Kohnstamm. p-Aminobenzonitrile. J. Am. Chem. Soc.,
With W. F. Hand. 3,5-Dibrom-2-aminobenzoic acid; its nitrile
and the synthesis of quinazolines from the latter. J. Am. Chem.
With C. H. Zieme. Production of anisic acid by the oxidation of

1904
With H. T. Beans. Metaaminobenzonitrile and some of its deriv-

1905
A card index stock list for use in university departments of organic
With V. J. Chambers. Synthesis of 5–nitro–4–ketodihydroquina-
zolines from 6–nitro–2–aminobenzoic acid, 6–nitro–2–acetyl-
aminobenzoic acid, and from the corresponding nitro acetyl-
With A. W. Dox. Condensation of succinylsuccinic acid diethyl


Notes from the Department of Organic Chemistry. Columbia Univ. Q., 8:70.


1906


1907


1908


1909

Chemistry and the conservation of our mineral resources. (Address at 2d Joint Conference on Conservation of Natural Resources) Conservation, 15:14–17.


With C. E. May. Quinazolines. XXI. Certain quinazoline oxygen

1910

Chemistry and the conservation of our water resources. J. Franklin Inst., 169:385-88; also in Chemical Engineer, 11:127-28.
1911


1912


1913

1914

1915
The special value of research in pure chemistry. Science, 42:737–46.

1916
(Reprint in: Columbia Alumni News, 8:170–73.)

1917
The National Research Council and the mobilization of our research resources in science. Journal of the National Institute of Social Sciences, 3:61–68.

1919

With C. P. Harris. Synthesis of some homologs of the terpenes, derivatives of 1,4-diisopropyl cyclohexane. J. Am. Chem. Soc., 41:1676–90.


1920


1921

Chemical preparedness. New Jersey Chemical Society Year Book, pp. 52–53.

1922

Papers of the Schools of Mines, Engineering and Chemistry, No. 9.

1923

1924

With F. H. Bergheim. Thiazoles. V. Constitution of Columbia Yellow (Chloramine Yellow) and the synthesis of some related compounds. Color Trade J., 15:63-68.


1925


1926


Cooperation between the American Manufacturers of Toilet Articles

1927


1928


Odor and chemical constitution. Chem. Listy, pp. 228-29. (In Czech)


1929


Veda a Prumysl (Science and industry). Proceedings of the Masaryk Academy of Work (Prague), 3:49–62; also in Nova Prace (Prague), 11:68.


1930


1931


1932


1934

With P. M. Apfelbaum. Synthesis of 1,1,2,6-tetramethyltetralin and the constitution of irene. Science, 79:280.
With T. Hasselström. Investigations in the retene field. III. Some

1935


1936


A spirane by-product in the phenanthrene synthesis. Science, 84:44.


1937


With R. B. Akin. Synthesis of 1,4-dimethyl-6,7-methylene dioxyphenanthrene and of certain substituted 9,10-dimethyl-1,2,5,6-dibenzanthracenes. J. Am. Chem. Soc., 59:1564–67.


1938


1939
With J. T. Cassaday. Synthesis of 1,4-dimethyl-6,7-dihydroxy-


1940


1941


124 BIOGRAPHICAL MEMOIRS


1942


1943


1944


1945

Memorial meeting in honor of Marie Sklodowska Curie. Bulletin of the Polish Institute of Arts and Sciences in America, 3:200–201.


1946


1947


1949

GERMAN PATENTS

228,796, Klasse 22a, Gruppe 1 Verfahren zur Darstellung von Azo-
farbstoffen
236,848, Klasse 12a, Gruppe 6 Verfahren zur Darstellung von 2,4-
Diamino-i-phtalsäure bezw. ihre Acidylderivate

U.S. PATENTS

1,012,055, Azo Dyestuffs
1,032,734 Products obtainable from 4,6-diamino-1,3-xylene and
process of making
1,574,337 Dyestuff Intermediates