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Federer joined the American Mathematical Society (AMS) in 1943. He served as 
associate secretary during 1967 and 1968 and as AMS representative to the National 
Research Council from 1966 to 1969, and at the 1977 summer AMS meeting in Seattle 
he was the Colloquium Lecturer. In 1987, he and Wendell Fleming received the AMS’s 
Steele Prize for their 1960 paper “Normal and integral currents.”

Federer was an Alfred Sloan Research Fellow (1957–1960), a National Science Foun-
dation Senior Postdoctoral Fellow (1964–1965), and a John Guggenheim Memorial 
Fellow (1975–1976). He became a fellow of the American Academy of Arts and Sciences 
in 1962 and a member of the National Academy of Sciences in 1975. He passed away on 

Herbert Federer was born in Vienna, Austria, in 1920, 
immigrated to the United States in 1938, and became a 
naturalized citizen in 1944. Federer was a rather private 
person. In later years, he was reluctant to discuss with 
colleagues the painful memories of events related to his 
departure from Austria. For the rest of his life, he chose 
never to travel to Europe.

Federer began his college education at a teachers college 
which later became  the University of California, Santa 
Barbara. His exceptional mathematical talent was quickly 
recognized, and he soon transferred to the University of 
California, Berkeley. He received from Berkeley a B.A. in 
mathematics and physics in 1942 and his Ph.D in math-
ematics in 1944. During 1944 and 1945 Federer served in 
the U.S. Army at the Ballistics Research Laboratory in Aber-
deen, MD. Immediately after receiving an Army discharge, he joined the Department of 
Mathematics at Brown University, where he remained until his retirement in 1985. Another 
major event in Federer’s life was his marriage in 1949 to Leila Raines, who survives him at 
this writing. Mathematics and his family were Herb’s two great loves. He was devoted to 
his wife and their three children.

H E R B E R t  F e d e r e r
July 23, 1920–April 21, 2010

Elected to the NAS, 1975

By Wendell H. Fleming 
and William P. Ziemer
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April 21, 2010. An article about his life and career appeared in the May 2012 issue of the 
Notices of the AMS.1

Federer is remembered for his many deep and original contributions to the fields of 
surface area theory and geometric measure theory. It is difficult to imagine that the rapid 
growth of geometric measure theory (beginning in the 1950s), as well as its subsequent 
influence on other areas of mathematics and applications, could have happened without 
his groundbreaking efforts. Research on surface area theory flourished from the 1930s 
through the 1950s, and beginning with two 1944 papers Federer quickly became a leader 
in that field (Federer 1944a, 1944b) [See Selected Bibliography below]. He developed 
techniques, based on new methods in algebraic topology, that were applicable to area 
theory for surfaces of any dimension k —and not merely for k=2, as in previous work.

One of the goals of geometric measure theory is to provide a theory of k- dimensional 
measure for subsets of n-dimensional Euclidean space ℝn, for any dimension k ≤ n. 
Federer’s definitive 1947 paper described the structure of subsets of ℝn that have finite 
k-measure in the sense of Hausdorff. Another goal is a theory of integration over k-di-
mensional “surfaces,” which are defined in a suitable weak sense. Federer’s 1945 paper 
was an initial step, in which the classical Gauss-Green theorem was obtained without 
traditional smoothness assumptions. In later work, he defined surfaces of dimension k as 
integral currents; his 1960 paper with Fleming stimulated the development of geometric 
measure theory during the 1960s and afterward. Federer’s authoritative book Geometric 
Measure Theory appeared in 1969. To quote his former Ph.D. student Robert Hardt:

Forty years after the book’s publication, the richness of its ideas continue 

to make it both a profound and indispensable work. Federer once told 

me that, despite more than a decade of his work, the book was destined 

to become obsolete in the next 20 years. He was wrong. The book was 

just like his car, a Plymouth Fury wagon purchased in the early 1970s that 

he somehow managed to keep going for almost the rest of his life. Today 

[May 2012], the book Geometric Measure Theory is still running fine 

and continues to provide thrilling rides for the youngest generation of 

geometric measure theorists.2

1 Parks, H. 2012. Remembering Herbert Federer (1920-2010). Notices Amer. Math. Soc. 59:622–631. 
2 Ibid., 626.
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Federer’s 1978 paper on the subject was 
based on his 1977 AMS Colloquium 
Lectures. Nonspecialists may find it a 
useful complement to the more detailed 
development in his 1969 book.

Both surface area theory and geometric 
measure theory were partly motivated 
by geometric problems in the calculus of 
variations. Plateau’s Problem (or problem 
of least area) is a typical example. Federer’s 
results of 1960 imply the existence of 
k-area minimizing integral currents that 
have given (k-1)-dimensional boundary 
(Federer 1960). There remained the very 
difficult problem of regularity of such 
k-area minimizing currents, for which Fred Almgren (who was Federer’s Ph.D. student), 
Federer himself (Federer 1970), and others contributed results.

Federer’s 1965 paper provided insights that created new linkages between Riemannian, 
complex, and algebraic geometry through what is now called calibration theory. He 
showed the following: Let M be a Kähler manifold of complex dimension m, and V any 
complex variety in M of complex dimension k. Then V corresponds to a locally 2k-area 
minimizing integral current. By taking M to be complex Euclidean space Cm=ℝ2m, a 
large class of examples of singular sets for 2k-area minimizing integral currents in ℝ2m is 
obtained.

A further discussion of Federer’s research contributions, including some technical details, 
is given later in this article.

One characteristic of Federer’s work was his dedication to learning many different kinds 
of mathematics. When he became interested in a new subject (e.g., algebraic topology, 
differential geometry, or algebraic geometry), he would first spend many weeks reading 
classical and modern books on it. He would then teach a graduate course on the topic 
and produce a large collection of lecture notes. One of his principal points of advice to 
graduate students was indicated by the only sign on his office door. It was a long, verti-
cally stacked series of small stickers that said “Read, Read, Read, ...”

(Photo courtesy Department of Mathematics. 
Brown University.)
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Federer set very high standards for his 
mathematical work and expected high-
quality research from his students; he 
supervised the Ph.D. theses of 10 of 
them. As of January 2013, the Math-
ematics Genealogy Project website 
listed for him 169 Ph.D. mathematical 
descendents (students, “grandstudents,” 
and “great-grandstudents”). While some 
students found Federer’s courses daunting, 
he was very welcoming to anyone who 
was deeply committed to mathematics 
and who took the trouble to get to know 
him.

Fair-minded and very careful to give 
proper credit to the work of other people, 
Federer also was generous with his time 
when serious mathematical issues were at 
stake. He was the referee for John Nash’s 
1956 Annals of Mathematics paper “The 
imbedding problem for Riemannian 
manifolds,” which involved a collabo-
rative effort between author and referee 
over a period of several months. In the 
final accepted version, Nash stated, “I 
am profoundly indebted to H. Federer, 
to whom may be traced most of the 

improvements over the first chaotic formulation of this work.” This paper provided the 
solution to one of the most daunting and longstanding mathematical challenges of its 
time.

Federer’s research contributions

Federer’s work can be grouped into two categories: Lebesgue area theory and geometric 
measure theory (GMT), although there is considerable overlap between the two. Federer 
was considered a giant by many mathematicians because of his profound influence on 
geometric analysis. The first published paper of his career was the result of his asking  

(Photo courtesy Department of Mathematics. 
Brown University.)
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A. P. Morse, who later turned out to be his Ph.D. mentor, for a problem to test whether 
he was capable of being a research mathematician. In Federer’s resulting joint paper on 
GMT with Morse (1943), the answer became abundantly clear that Federer indeed had 
the right stuff.

Federer, one of the creators of GMT, is perhaps best known for his fundamental devel-
opment of the subject throughout his career, which culminated in the publication 
of a treatise (Federer 1969). This book, nearly 700 pages long, has become the stan-
dard-bearer for GMT, and it is written in a manner that commands both admiration 
and respect because of its virtually flawless presentation of a wide range of mathematical 
subjects. Morever, it is written in a style that is unique to Federer. The book was carefully 
prepared in handwritten notes and includes an extensive bibliography of approximately 
230 items. Such attributes are typical of all of his writings.

The problem of what should constitute the area of a surface confounded researchers for 
many years. In 1914 Carathéodory defined a k-dimensional measure in ℝn in which he 
proved that the length of a rectifiable curve coincides with its one-dimensional measure. 
In 1919, Hausdorff, developing Carathéodory’s ideas, constructed a continuous scale 
of measures. After this, it became obvious that area should be regarded as a two-dimen-
sional measure and should establish the well-known integral formulas associated with 
area. Later, Lebesgue’s definition (somewhat modified by Frechet) of area—as being the 
lower limit of areas of approximating polyhedra—became dominant, partly because 
of its successful application in the solution of the classic Plateau’s (least-area) Problem. 
This definition had the notable feature of lower semicontinuity, which is crucial in the 
calculus of variations. Federer’s two papers of 1944 mark the beginning of his research 
on Lebesgue area, a field that until that time was led by two influential mathematicians, 
Lamberto Cesari and Tibor Rado. In Federer (1944b), he considered the problem that 
is perhaps the central question in area theory, the answer to which had been sought by 
many researchers.

Basic question in area theory: Let ƒ denote a continuous map from U into ℝn , where U 
is a region in ℝk. What is the type of multiplicity function that, when integrated over the 
range of ƒ with respect to the Hausdorff measure, will yield the Lebesgue area of ƒ?

In Federer (1944b), his results imply that if all the partial derivatives of f exist everywhere 
in a region T, then the Lebesgue area can be represented as the integral of the crude 
multiplicity function N(ƒ, T, y) which denotes the number of times in T that ƒ takes the 
value y.
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Federer’s paper of 1947 really lays the foundation for the development of GMT. Up to 
the time of this paper, A. S. Besicovitch had studied the geometric properties of plane 
sets of finite Carathéodory linear measure, and these studies were extended by A. P. 
Morse and J. F. Randolph. The corresponding problems for two-dimensional measures 
over three-dimensional space are connected with the theory of surface area. This paper 
contained a discussion of these properties for a large class of k-dimensional (outer) 
measures over n-dimensional space and also developed some of the fundamental tools of 
GMT. For example, Federer showed that any set E ⊂ ℝn with finite k-dimensional Haus-
dorff measure can be decomposed into rectifiable and non-rectifiable parts. Then Federer 
applied the preceding theory to show that the Hausdorff measure of a two-dimensional 
nonparametric surface in ℝ3 equals the Lebesgue area of the map defining the surface. In 
a measure-theoretic sense, the rectifiable part of E almost coincides locally with the graph 
of a Lipschitz function. For most projections of ℝn onto a k-plane through the origin, the 
unrectifiable part of E projects onto a set of k-dimensional Lebesgue measure 0.

The problem of finding a suitable multiplicity function such that its integral over the 
range of ƒ will yield the Lebesgue area of ƒ remained intractable until Federer brought 
some notions of algebraic topology to bear. In Federer (1946), an area is defined for all 
continuous k-dimensional surfaces in terms of the stable values of their projections into 
k-dimensional subspaces; the area thus defined is lower semicontinuous. Its relation 
to Lebesgue area is only partially settled in this paper. Then, in Federer (1948), results 
were announced that represented generalizations to n dimensions of material previously 
known only in the two-dimensional case. The topological index, which had been used 
as a principal tool in the two-dimensional case, was replaced by the topological degree 
(expressed in terms of Čech cohomology groups) and by the use of the Hopf Extension 
Theorem. These changes allowed the stable multiplicity function to be determined by 
merely counting the number of essential domains of ƒ-1(U), where U is a domain in ℝn. 
The techniques of algebraic topology were fully applied. The key to extending the theory 
of Lebesgue area from two-dimensional surfaces in ℝ3 to surfaces in ℝn was the general-
ization of Cesari’s inequality from ℝ3 to ℝn.3 That inequality states that the Lebesgue area 
of a mapping ƒ:X→ℝ3 is dominated by the sum of the areas of its projection onto the 
three coordinate planes. Here X denotes a finitely triangulable subset of the plane. In his 
paper of 1955, Federer proved the extension of this inequality to ℝn, which was a monu-
mental achievement as it necessitated the complete development of the length 

3  Cesari, L. 1942. Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue. Ann. Scuola 
Norm. Super. Pisa (2) 11:1–42. 
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of light mappings defined on an arbitrary metric space, thus foretelling the directions of 
modern day GMT. Here, the length of a light mapping ƒ:X→Y, where X is assumed to 
be a locally compact, separable metric space and Y an arbitrary metric space, is defined as 
the supremum of ∑diam[ƒ(C)], where the supremum is taken over all countable disjoint 
families of nondegenerate continua in X. So, with this result, the theory of Lebesgue area 
for surfaces in ℝ3 can be essentially generalized to surfaces in ℝn.

Federer’s paper of 1955 was one of his best efforts in area theory. In particular, it 
contained the basic idea that led to the fundamental result, the Deformation Theorem 
of GMT (Federer and Fleming 1960). The paper appeared in the Annals of Mathematics 
because it was rejected for publication by the Transactions of the AMS despite the fact that 
it was of the highest quality. This bothered Federer considerably, and he contemplated 
leaving the field. Fortunately, he did not, for his best work was yet to come. For example 
in his and Demers’ paper of 1959 (1959b), the authors went on to improve the results 
of Federer (1955) by showing that in the case of a flat mapping ƒ, a mapping in which 
both the domain space and the range space are of the same dimension, the k-dimensional 
Lebesgue area of ƒ equals the integral of a new multiplicity function that is defied in 
terms of norms of cohomology classes.

The paper Federer (1959a) establishes a very useful result in GMT, known as the co-area 
formula. In its most elementary form, it states that if ƒ is a real-valued function of class 
C1, then the total variation of ƒ can be expressed in terms of integration of ƒ over the 
fibers of ƒ with respect to (n-1)-dimensional Hausdorff measure. In its more general 
form, the formula is valid for any Lipschitz mapping from X to Y, where X and Y are 
separable Riemannian manifolds of class 1 with respective dimensions n and k, n≥k. This 
result has generated great interest and has led to many applications and generalizations. 
For example, Fleming and Rishel (1960)4 established a co-area formula for ƒ∈BV(ℝn), 
while Malý, Swanson, and Ziemer (2003) proved it for a suitable class of Sobolev 
mappings.5

As for the basic question in area theory that was stated above, the answer was provided in 
Federer’s last publication on the subject (1961). Let ƒ:X→ℝn be a continuous mapping, 
where X is a compact manifold of dimension k≤n Assuming that ƒ has finite Lebesgue 

4  Fleming, W. H., and R. Rishel. 1960. An integral formula for total gradient variation. Arch. Math. (Basel) 
11:218–222.

5 Malý, J., D. Swanson, and W. P. Ziemer. 2003. The co-area formula for Sobolev mappings. Trans. Amer. Math. 
Soc. 355(2):477–492. 
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area and that either k=2 or that the range of ƒ has (k+1)-dimensional Hausdorff measure 
0, Federer proved that there exists a unique current-valued measure μ defined over Mƒ, 
the middle space associated with ƒ, such that the total variation of μ is equal to the 
Lebesgue area of ƒ. Moreover, the density of μ, with respect to k-dimensional Hausdorff 
measure, yields a multiplicity function that provides the answer to the basic question. 
While Federer was writing this 1961 paper, he said that he intended to write it very 
concisely because he knew that area theory was a dying field and that the paper would 
not generate much interest. By that time, he was already consumed with the devel-
opment of GMT.

Even for the casual reader of Federer’s work, it becomes clear that he brought an 
incredible arsenal of tools to bear on whatever the problem at hand. It is also clear that 
his determination to learn virtually everything about a problem was highly unusual—for 
example, his taking a period of 17 years to answer the fundamental question cited above. 
In reviewing Federer’s 1946 paper, G. Bailey Price apparently agreed:

The paper as a whole is characterized by the treatment of problems and 

the employment of methods of great generality. The author uses many 

results from two of his previous papers [Federer 1944a, 1944b]. In addi-

tion, he employs a wide variety of powerful tools selected freely from 

the theory of topological groups, measure theory, integration theory, the 

theory of functions of real variables, topology, and other fields of modern 

mathematics.

As an indication of how he has inspired others to carry on his work, consider that the 
number of citations in Mathematical Reviews to his book on GMT is nearly 1,500, and 
consider as well the recent work of those who have extended Federer’s work to metric 
spaces.6, 7

As indicated above, Federer made contributions to GMT in his writings (Federer 
1947, 1955, 1959a and b, 1961), but it was the seminal paper “Normal and integral 
currents” (Federer and Fleming 1960) that marked the birth of GMT and went on to 
receive the American Mathematical Society’s 1987 Steele Prize. The paper was devoted 
to the development of the notion of a generalized k-dimensional surface in ℝn, which 

6 Ambrosio, L. 2001. Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces. 
Adv. Math. 159(1):51–67. 

7 Ambrosio, L. 2002. Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued 
Anal. 10(2–3):111–128. 
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would include a powerful compactness property—achieved by employing de Rham’s 
currents, which when k =0 become Schwartz distributions. Because a current is defined 
as a continuous linear functional on a space of differential k forms, there is a natural 
definition of boundary, namely ∂T:=T°d, where d denotes the exterior derivative of a 
k-form ϕ. This formulation facilitates the study of homology groups of spaces of integral 
currents. The mass M(T) of a k-dimensional current T is its norm when considered as a 
linear function of continuous k forms and a current T for which N(T):=M(T)+M(∂T)<∞ 
is called normal. The mass closure of the space of Lipschitz images of Lipschitz chains 
with integer coefficients are called “rectifiable currents.” If both T and ∂T  are rectifiable, 
T is called an integral current.” It turns out that a current T is rectifiable if and only if 
there exist a k-rectifiable set E⊂ℝn and Hausdorff measurable functions Θ and M defined 
on E such that M is integer-valued and that T(ϕ)=∫EM(ϕ⋅Θ)dHk for all k-forms ϕ. That 
the space of integral currents was destined to be an object of great interest in the calculus 
of variations was due to the powerful closure theorems that showed the weak limit of 
a sequence of N-bounded integral currents to be an integral current and every normal 
rectifiable current to be an integral current. These results have immediate applications to 
the Plateau’s Problem, for they imply the existence of k-dimensional rectifiable area-mini-
mizing varieties with prescribed boundaries in ℝn.

The next question that needs to be addressed is the smoothness of the area-minimizing 
current T. This is called the regularity question, which turned out to be notoriously 
difficult. The goal was to prove smoothness of the support of a k-area-minimizing 
integral current T, except at points of a singular set of lower Hausdorff dimension. 
Examples show that in dimensions 1<k<n-1, the singular set can have Hausdorff 
dimension k-2. Eventually, Almgren proved that the singular set in fact has dimension 
of at most k-2.  This was a true tour de force in that it represented a 10-year effort and 
resulted in a 1,700-page manuscript.

In codimension 1 (k=n-1), it seemed at first that area-minimizing currents might 
have no singular points. This turned out to be correct for n≤7 by results of DeGiorgi, 
Almgren, and Simons. However, in 1969 Bombieri, DeGiorgi, and Giusti gave an 
example of a seven-dimensional cone in ℝ8 that provides a seven-dimensional area-min-
imizing integral current with a singularity at the vertex. In Federer’s paper of 1970 he 
showed that this example is generic in the sense that the singular set can have Haus-
dorff dimension at most n-8. In the same paper Federer also considered another version 
of Plateau’s Problem, which in effect ignores orientations. He showed that, for this 
“non-oriented version,” the singular set has Hausdorff dimension of at most k-2 for arbi-
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trary k. Thus, in the nonoriented case, Federer was able to obtain the optimal regularity 
result much more directly.

Normal currents were shown to have many applications, most notably in the devel-
opment of functions defined on an open set U⊂ℝn whose derivatives are measures 
BV(U). Federer proved that a function ƒ∈BV(ℝn) with compact support corresponds 
to a normal current of dimension k=n. Because of Theorem 4.5.9 in his 1969 book—a 
theorem with 31 parts to it—the class of functions on whose partial derivatives are repre-
sentable by integration is now widely regarded as the proper generalization to n>1 of the 
class of those functions on ℝ that are equal almost everywhere to functions of locally 
bounded variation. Then, despite the fact that a BV function can be discontinuous every-
where, results are given that use Hn-1-approximate upper and lower limits to provide a 
complete extension to n>1 of the classical results describing the continuity properties of 
functions of bounded variation. The extension includes that ƒ can be defined Hn-1-almost 
everywhere as the limit of its integral averages). Furthermore, it is shown that the set 

   G:= (ℝn ×ℝ)∩{(x, y):λ(x)≤y≤μ(x)    (1)
where λ(x) and μ(x) denote the lower and upper approximate limit of ƒ at x, is 
n-rectifiable.

Research on the problem of finding the most natural and general form of the Gauss-
Green theorem has contributed greatly to the development of geometric measure theory. 
Throughout the proof of Theorem 4.5.9, a prominent role was played by the Gauss-
Green theorem of De Giorgi and Federer.8 The classical Gauss-Green theorem states that 
if E⊂ℝn is a bounded set with smooth boundary B and V is a smooth vector field on ℝn, 
then 

   ∫E divV (x)dx = ∫BV(y)⋅ν(y)dHn-1(y)   (2)

where ν(y) is the exterior unit normal at y and Hn-1 is Hausdorff measure in dimension 
n<1. In De Giorgi and Federer’s results, much weaker assumptions are made about E. If 
E is identified with the corresponding current TE of dimension n, it suffices to assume 
that TE  is an integral current. Then  equation (2) holds, with B replaced by B*, where 
B*⊂B is the “reduced boundary” in De Giorgi’s terminology and ν(y) is an approximate 
normal at y defined in a suitable measure-theoretic sense.

8  De Giorgi, E. 1955. Nuovi teoremi relativi alle misure (r-1)-dimensioni in uno spazio ad r dimensioni. 
Ricerche Mat. 4:95–113.
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In another influential paper (1965), 
Federer defined slicing of a normal 
current T in a differentiable manifold X 
by a locally Lipschitzian map ƒ: X → ℝn. 
With almost every point y ∈ ℝn there is 
associated, by means of relative differen-
tiation of measures, a normal current <T, 
ƒ, y> of dimension dim(T)-n, which can 
be thought of as the slice of T in ƒ-1y . In 
case T is integral, <T, ƒ, y> will also be 
integral. Another important result of this 
paper is a new measure-theoretic charac-
terization of integral currents. Suppose 
T is a k-dimensional current in ℝn and 
U , V are k--dimensional currents with 
∂T=U+V . If T is rectifiable, M(U) < ∞, 
and Hk-1(sptV)=0, then M(∂T) < ∞; hence 
T is an integral current.

Then Federer gives a very short proof 
of Wirtinger’s inequality, from which it 
follows that on a Kähler manifold, integral 
currents with almost-everywhere complex 
tangent spaces are minimal currents. 
Using the characterization of integral 
currents above, one sees that each complex algebraic variety of complex dimension k on 
a Kähler manifold X is naturally a minimal (locally) integral current of dimension 2k on 
X. The following striking fact is a consequence. In the higher-dimensional versions of the 
Plateau’s Problem (now formulated in terms of minimal currents), not only will singu-
larities ordinarily arise in the solutions, but in particular every singularity of a complex 
algebraic variety can occur.

Federer saw that his theory of slicing would also have application to intersection theory, 
a concept that was initiated by Kronecker.9 In fact, in his 1969 book Federer conjectured 
that his theory of slicing could be used to construct a viable intersection theory for real 

9  Kronecker, L. 1868. Über systeme von functionen mehrerer variabeln. In Monatsber. König. Preuss. Akad. Wiss. 
Berlin. 339–346. 

Herbert and Lila Federer. 
(Photo courtesy Department of Mathematics. 
Brown University.)
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analytic chains. This conjecture was validated by Robert Hardt,10 a Ph.D. student of 
Federer, when he showed the following:

Let n, t ≥ n be integers, M a seperable oriented real anlytic manifold, T a t-dimensional 
analytic chain in M, ƒ an analytic map from M into the n-dimensional Euclidian space 
ℝn,<T, ƒ, y> the slice of T in ƒ-1{y} for almost all y ∈ ℝn, and Y = {y ∈ ℝn : dim(ƒ-1{y} 
∩ sptT) ≤ t - n and dim(ƒ-1{y} ∩ spt∂T) ≤ t - n - 1}. Then the association of <T, ƒ, y> 
with y maps Y into the (t - n)-dimensional analytic chains in  M and is continuous with 
respect to the topology of the locally integral flat chains in M. Using this as a basic tool, 
Hardt then showed that if S and T are analytic chains in M and the dimensions of sptS 
and sptT satisfy certain conditions, then the intersection of S and T, denoted by S∩T, is 
well defined by slicing the Cartesian product S×T, in any coordinate neighborhood, by 
the subtraction map. The resulting real analytic intersection theory is then characterized 
by certain algebraic formulae.

Herbert Federer will be remembered as a pioneer in geometric analysis—as one who 
made fundamental and profound advances in many different ways, thus helping other 
new ideas to develop. Federer told one of us (Ziemer) while he was writing his book 
that he “was inscribing his epitaph on his tombstone.” Indeed he did; and it is our good 
fortune that he did it so indelibly. His legacy will be a source of inspiration far into the 
future.

10  Hardt, R. M. 1972. Slicing and intersection theory for chains associated with real analytic varieties. Acta Math. 
129:75–136. 
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