VICTOR KUHN LAMER

1895—1966

A Biographical Memoir by
LOUIS P. HAMMETT

Any opinions expressed in this memoir are those of the author(s)
and do not necessarily reflect the views of the
National Academy of Sciences.

Biographical Memoir

Copyright 1974
National Academy of Sciences
Washington D.C.
VICTOR KUHN LaMER

June 15, 1895–September 26, 1966

BY LOUIS P. HAMMETT

VICTOR KUHN LaMER had a lifelong devotion to the cause of good science and good teaching of science. That he was a perfectionist shows throughout his scientific work. In everything he did the background in principle was thoroughly studied, the experimentation was of the highest possible precision and showed the most careful attention to detail and to completeness, and the publications that resulted were clear and effective. He had the ability and the willingness, which are all too rare, to recognize the limitations of a theory as well as its strengths. In many areas his work remains a key reference, sometimes even after several decades.

He taught a central course in the graduate curriculum in chemistry at Columbia University, and he taught it with a continuing interest that reached deeply into the history of the subject as well as into the logic of its organization. He expected much of his students: He could be emphatic in his disapproval of carelessness or incompetence, but he could be equally emphatic in his praise of ability and accomplishment.

He gave richly of his time and his energy to the doctoral candidates who worked with him. He schooled them well in his own principles of probity, precision, and thoroughness, and they looked on him with respect and affection.

LaMer’s own doctoral work, carried out with Henry Sher-
man, was in the field of the chemistry of food and nutrition—a subject to which his thesis made important contributions, especially in the application of statistical methods. His interests soon turned, however, to physical chemistry. In 1922 and 1923 a fellowship took him to Europe, where he arrived in Brønsted's laboratory in Copenhagen at an exciting period. New vistas in the old field of electrolyte chemistry had suddenly been opened by the ideas of Brønsted and Debye, and LaMer became a leader in the exploitation and development of these ideas. His publications of the next decade on the activity coefficients of multiply charged ions and on the rates of reactions involving such ions still deserve the most careful study and attention from anyone concerned with the chemistry of electrolytes. He and his co-workers also did important theoretical work on electrolyte solutions.

When in 1931 the existence of deuterium was discovered at Columbia, LaMer did pioneering work on the properties of solutions in heavy water. His studies on acid–base equilibria in that solvent were especially significant. In 1933 he questioned the prevalent myth that activation energy is independent of temperature, and shortly thereafter he and his students demonstrated experimentally that it does depend sharply on temperature for reactions involving ions in solution. This lent valuable support to the then nascent transition state theory of reaction rate, a theory that has revolutionized the way in which chemists interpret the rates of reactions in solution. In the same year he reported a study of acid–base equilibria in the poorly ionizing solvent benzene. This was a ground-breaking investigation in a field that has since become one of major importance.

With the arrival of World War II, LaMer undertook as a patriotic service the investigation of smokes and other fine dispersions. He and Sinclair established principles and developed what is now a standard apparatus for the preparation of monodisperse aerosols. They further discovered a new optical
effect—the higher order Tyndall spectra—that enables one to measure particle size rapidly and simply.

When the war ended LaMer was of an age when many scientists tend to slow down and to continue along well-trodden paths. For him, however, the post-war period was one of adventure into new fields and of highly original activity. His interest in gaseous dispersions expanded to liquid systems, he made contributions to the difficult problems involved in sedimentation and filtration, and he developed principles and made valuable new observations with respect to flocculation and dispersion—processes of potentially large technical importance as well as of purely scientific interest. Novel studies of the rate of evaporation through surface monolayers also combine scientific interest with potential applications of value for the conservation of water supplies.

Victor Kuhn LaMer was born in Leavenworth, Kansas, on June 15, 1895, the son of Joseph Secondule LaMer and Anna Pauline Kuhn. He obtained the A.B. degree at the University of Kansas in 1915. During the next two years he was a high school teacher, a student at the University of Chicago, and a research chemist at the Carnegie Institution of Washington. In 1917 he was commissioned 1st Lieutenant in the Sanitary Corps, U.S. Army. He entered graduate school at Columbia University in 1919 and obtained the Ph.D. degree there in 1921. Appointed instructor in general and inorganic chemistry at Columbia in 1920, he rose through various grades at that institution, attaining full professorship in 1935. Awarded a Cutting Fellowship, he worked at Cambridge University in 1922 and at the University of Copenhagen in 1923. He was a member of Division 10 of the Office of Scientific Research and Development, 1940–1945. He became Emeritus Professor of Chemistry in 1961, but continued his scientific activities. He held the position of Senior Researcher in Mineral Engineering
at Columbia, and he continued until 1965 as editor of the *Journal of Colloid and Interface Science*. He had been the founding editor of that journal in 1956, and in March 1966 a *Festschrift* edition honored him on his retirement as editor and on his seventieth birthday. He was in England to present a paper at a meeting of the Faraday Society at the time of his sudden death in Nottingham on September 26, 1966.

LaMer was honored by the Presidential Certificate of Merit in 1945, by the Kendall Award in Colloid Chemistry in 1956, by the honorary D.Sc. degree of Clarkson College of Technology in 1962, and by election to the Royal Belgian Academy of Arts, Letters, and Sciences and to the Royal Danish Academy of Science. He was Honorary Professor of San Marcos University of Lima, Peru, in 1950, Fullbright Professor at Copenhagen in 1953, and Fullbright Lecturer in Australia in 1959.

He was elected to the National Academy of Sciences in 1948. He was also a member of the American Chemical Society, the American Physical Society, the Faraday Society, and Sigma Xi and Phi Lambda Upsilon; he was a Fellow of the New York Academy of Sciences, of which he had been President in 1949. He was a member of the Cosmos Club of Washington and of the Men’s Faculty Club of Columbia University.

On July 31, 1918, he married Ethel Agatha McGreevy. They had three daughters: Luella Belle (Mrs. A. P. Slaner), Anna Pauline (Mrs. Alex Burgo), and Eugenia Angelique (who died in childhood). The LaMers lived in Leonia, New Jersey, which was the home of many others of the Columbia faculty, and were active in social and community affairs of that town.
BIBLIOGRAPHY

KEY TO ABBREVIATIONS

Chem. Rev. = Chemical Reviews
J. Am. Chem. Soc. = Journal of the American Chemical Society
J. Biol. Chem. = Journal of Biological Chemistry
J. Colloid Sci. = Journal of Colloid Science
Phys. Rev. = Physical Review

1918

1920

1921

The effect of temperature and hydrogen ion concentration upon the rate of destruction of the antiscorbutic vitamin. Dissertation, Columbia University.
With H. C. Sherman and H. L. Campbell. The effect of temperature and the concentration of hydrogen ions upon the rate of

1922

1923

1924

1925

1927

Recent advances in the ionization theory as applied to strong electrolytes. Transactions of the American Electrochemical Society, 61:631.

1928

With Karl Sandved. The equilibrium $\text{2K}_3\text{Fe(CN)}_6 + 2\text{KI} \rightleftharpoons 2\text{K}_4\text{Fe(CN)}_6 + \text{I}_2$ in aqueous potassium chloride solutions. J. Am. Chem. Soc., 50:2656.

1929

1930

With H. B. Friedman. Neutral salt action. The relative influence of cations and anions upon the equilibrium $2\text{Fe(CN)}_6^{3-} + 3\text{I}^- \rightleftharpoons 2\text{Fe(CN)}_6^{4-} + \text{I}_3^-$. J. Am. Chem. Soc., 52:876.

1931

With I. A. Cowperthwaite. The electromotive force of the cell $Zn (s) \mid ZnSO_4 (m) \mid PbSO_4 (s) \mid Pb (s)$. An experimental determination of the temperature coefficient of the ion size parameter in the theory of Debye and Hückel. J. Am. Chem. Soc., 53:4833.

1932

1933

1934

With I. A. Cowperthwaite and J. Barksdale. A thermodynamic study of dilute thallous chloride solutions by electromotive force measurements of the cell Tl-Hg / TlCl (m) /AgCl (s), Ag (s). J. Am. Chem. Soc., 56:544.

1935

1936

With J. P. Chittum. The conductance of salts (potassium acetate) and the dissociation constant of acetic acid in deuterium oxide. \textit{J. Am. Chem. Soc.}, 58:1642.

1937

1938

With S. Liotta. The temperature coefficients of the base catalyzed

1939

1940

With F. Brescia. The calculation of equilibrium values and rate

1941

1942

1943

1945

1946

With M. D. Barnes. Monodispersed hydrophobic colloidal dispersions and light scattering properties. II. Total scattering from transmittance as a basis for calculation of particle size and concentration. J. Colloid Sci., 1:79.

1947

With James W. Yates. Influence of ultrasonic irradiation upon the phase transition in the formation of colloidal sulfur. Science, 106:508. (A)

1948

1949

1950

With Milton Kerker. Particle size distribution in sulfur hydrosols
With Edward Inn and Irwin Wilson. The methods of forming, detecting, and measuring the size and concentration of liquid aerosols in the size range of 0.01 to 0.25 microns diameter. J. Colloid Sci., 5:471.
With V. A. Gordievskiy. The vapors of sulfuric acid-water mixtures as nucleating sources in aerosol formation. Science, 112:20. (A)

1951

1952
1953

1954

1955

1956

With R. H. Smellie, Jr. Flocculation, subsidence and filtration of uraniferous colloidal ore dispersions (slimes). In: Proceedings

1960

1961

1962

With Robert H. Smellie, Jr. Theory of flocculation, subsidence,

1963

The case for evaporation suppression. Chemical Engineering, 70:213.

1964

With Jacqueline C. Kane and H. B. Linford. The filtration of

1965

1966

1967
