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Raoul’s mother died of cancer when he was just 12 years old—a devastating blow1 
that brought him closer to his stepfather. He also had a network of uncles, aunts, and 
cousins who provided an extended family. In 1938–1939, with the German designs on 
Czechoslovakia becoming increasingly clear, his stepfather acted promptly and moved to 
England, with Raoul following in June 1939, where he met the new stepmother from a 

1	 This memoir originally appeared, in slightly different format, in Biographical Memoirs of the Royal Society 
53(2007):63-76 and printed with permission.

Raoul Bott1 was one of the outstanding geometers of our 
time, and his influence on mathematics owed much to the 
warmth of his personality.

Early background

Raoul was born in Budapest, Hungary, but until the age 
of 16 years he lived in Slovakia. He was a typical child 
of the Austro-Hungarian world, educated in a variety 
of languages: Hungarian, Slovak, German, and English 
(learned from his English governesses). Raoul’s mother was 
Hungarian and Jewish, whereas his father was Austrian 
and Catholic. Despite the fact that his parents’ marriage 
broke up shortly after he was born, and that he saw very 
little of his father, his mother brought him up as a Cath-
olic. Though lapsing as a teenager, he remained a Catholic 
throughout his life. Raoul’s mother remarried, to the chief 
executive of the local sugar factory, a position of some importance in the community. 
The family was well off, living a comfortable middle-class life; the parents traveled exten-
sively and the younger children were educated at home. Eventually, in 1932, they moved 
to Bratislava, the capital of Slovakia. Here Raoul finally went to a proper school, where he 
had to master Slovak; but he was a mediocre student and distinguished himself only in 
singing and German. His main interests at the time were music, which remained a passion 
all his life, and making electrical experiments in the basement, a foretaste of his decision 
many years later to study electrical engineering.
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wealthy Jewish family in Budapest whom 
his stepfather had just married.

Raoul was now sent to a boarding school, 
but fortunately for him he escaped (for 
the time being) the traditional rigors of 
an English public school. Instead he went 
to a progressive private school, which 
believed in freedom, self-expression, 
and coeducation. Raoul remembered his 
time there as one of the truly formative 
periods of his life: “In one stroke it made 
me a lifetime anglophile as well as a great 
admirer of the opposite sex.”

His stepparents had only a transit visa for 
England, and they left for Canada early 
in 1940, with Raoul following shortly 
thereafter. In Canada he had to have a 
further year of schooling and, as he said, 
“the harsh fate of going to a British public 
school, which I had miraculously so 
avoided in England, caught up with me in 
Canada.” In the autumn of 1941 he enrolled at McGill University as an electrical engi-
neering student. Here he had inspiring teachers; he worked hard and graduated in April 
1945. At that stage he decided to enlist in the army, but with the end of the Pacific war 
his military career was cut short and he returned to McGill in the autumn for a master’s 
degree. During this time Raoul was very unsure what path he should follow, and he even 
tried to take up medicine before being sympathetically but firmly discouraged by the 
school’s dean of medicine. This rejection triggered a prompt response from Raoul—he 
decided there and then to become a mathematician.

With the encouragement of his teachers at McGill he went to the Carnegie Institute of 
Technology (now Carnegie Mellon University) in Pittsburgh to work on applied math-
ematics under Professor John L. Synge. Despite Bott’s sketchy and formally inadequate 
mathematical background, he was accepted as a Ph.D. student and in the spring of 1949, 
when he received his degree, he finally found himself on the verge of becoming a math-

Figure 1. Raoul Bott, McGill University, 1942.  
(Photo courtesy the Bott family.)
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ematician. His thesis, written under the direction 
of Dick Duffin, led, also in 1949, to his first (joint) 
paper. Although the “Bott–Duffin theorem” came 
to be well known among electrical engineers, it was 
Bott’s last contact with that profession. However, 
the paper itself had attracted the attention of the 
great Hermann Weyl, originally from Göttingen, 
Germany, but now a colleague of Albert Einstein’s 
at the Institute for Advanced Study in Princeton, 
NJ. Weyl invited Bott to come to the institute, a 
move that immediately opened his eyes to the wider 
vista of mathematics and transformed his career.

Princeton and Michigan, 1949–1960

Bott spent the first decade after earning his Ph.D. 
between the Institute for Advanced Study and the 
University of Michigan in Ann Arbor. His teaching 

appointment to the Michigan faculty was preceded by two years, 1949–1951, as a visitor 
at the institute and he returned there for a sabbatical in 1955–1956. He described both 
of his stays in Princeton as decisive in his mathematical development.

In 1949, the institute introduced him to an entirely new mathematical world. There 
were the giants of the time—Albert Einstein, John von Neumann, and Weyl, all refugees 
like himself from Nazi Germany—together with leading American mathematicians such 
as Oswald Veblen and Marston Morse. Between them, and under their influence, the 
whole canvas of mathematics at the highest level was being explored and the young Bott 
was totally enraptured. He soon dropped the rather elementary and mundane work he 
had been doing at Carnegie on electrical circuits and began absorbing the new ideas that 
surrounded him in Princeton.

Both Princeton University and the institute were pioneers at the time in developing 
the new field of topology, which was rapidly maturing into the major enterprise it 
would become later. Morse had made his name (at the institute and earlier at Harvard 
University) in the application of topology to the study of critical points of functions 
(started by Henri Poincaré) and in topology’s extension to the calculus of variations. 
Both pursuits enabled the deriving of information about closed geodesics on Riemannian 

There were the giants of the 
time—Albert Einstein, John 
von Neumann, and Weyl, all 
refugees like himself from 
Nazi Germany—together with 
leading American mathemati-
cians such as Oswald Veblen 
and Marston Morse. Between 
them, and under their 
influence, the whole canvas 
of mathematics at the highest 
level was being explored and 
the young Bott was totally 
enraptured. 
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manifolds. This was a field that attracted Bott and remained a dominating theme 
throughout his life.

Bott’s most important work for many years centered on the application of Morse theory 
to the topology of Lie groups and their homogeneous spaces. Lie groups, in particular the 
classical matrix groups, had originated in the pioneering work of the Norwegian mathe-
matician Sophus Lie at the end of the 19th century; by the mid-20th century, Lie groups 
had become of central importance. Weyl had transformed their representation theory, 
and they were playing an important role both in differential geometry and quantum 
physics.

In the 1950s the time was ripe for bringing together the new fields of topology and 
Lie groups, and Bott was the right man at the right time to bridge this gap. Others 
contributed to the algebraic side of the story, but the link with analysis through Morse 
theory was due to Bott and his Michigan collaborator Hans Samelson. It was Bott’s good 
fortune that, when he went to Michigan in 1951 with his head full of new ideas, he 
found in Samelson a kindred spirit a little older in years and knowledgeable about Lie 
groups. Between them they wrote many papers about the topology of Lie groups and in 
particular about their loop spaces (in 1958). Fortunately, the introduction of loop spaces 
by J.-P. Serre in his 1951 thesis had revolutionized topology by providing a systematic 
approach to calculating homotopy groups. Bott and Samelson mastered Serre’s work and 
combined it with Morse theory in spectacular fashion.

In traditional Morse theory it was customary to assume that the critical points of a 
function were isolated, since this would be the generic case. However, Bott realized that 
“in nature” things are not generic and that critical points often arise along sub-mani-
folds. But he also realized how to incorporate such situations into the theory, and this 
was applied to great effect in the study of geodesics on Lie groups. For example, the 
closed geodesics on the group SU(2), the three-dimensional sphere, come naturally in 
continuous families parameterized by the equatorial 2-sphere. The culmination of this 
work of Bott and Samelson was the famous periodicity theorems discovered by Bott, 
which he published in 1957, but these deserve a section of their own.

The Periodicity Theorems

Calculating the homotopy groups of spheres, and related spaces such as Lie groups, had 
become the fundamental goal of homotopy theorists. In the early days, and by fairly 
crude geometric methods, this was only possible for low dimensions. Serre’s thesis had, 
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in principle, provided powerful algebraic machinery for more extensive calculations, 
but these were tricky and delicate. By 1955 homotopy theorists had gotten as far as 
π10(SU(n)), for n large, and found it to be cyclic of order 3. But early in 1957 Friedrich 
Hirzebruch and Armand Borel had concluded, through their quite independent compu-
tations, that the order of this group was a power of 2.

Such explicit contradictions are a challenge to mathematicians, and Bott felt that this 
one was right up his alley. He was sure that his methods would settle the issue, so he sat 
down with his friend Arnold Shapiro and calculated over an entire weekend. By Sunday 
evening they had adjudicated in favor of Borel and Hirzebruch. The homotopy theorists 
were wrong, reluctantly conceded defeat, and subsequently found their error. Serre, who 
was watching this battle from the sidelines, remarked “Quel dommage!” (What a pity!), 
observing tongue-in-cheek what a triumph it would have been for topology to be the first 
subject to demonstrate the inconsistency of mathematics!

This episode suggested to Bott that in fact all the high even-dimensional homotopy 
groups π2k(SU(n)), for n larger than k, should be zero. Further examination of the 
evidence then suggested to him that the (stable) homotopy groups of all the clas-
sical groups should be periodic, with period 2 in the unitary case and period 8 in the 
orthogonal and symplectic cases. Moreover, he felt confident that his Morse theory tech-
niques would yield a proof. By the summer of 1957 he had found the proof, which was 
then published.

This paper (“The stable homotopy of classical groups”) was a bombshell. The results were 
beautiful, far-reaching, and totally unexpected. By using analysis Bott had proven results 
way out of reach of conventional calculations. His reputation was made, and shortly 
afterward (in 1960) he moved to Harvard, where he remained for the rest of his life.

At this stage I have to make the move from being the official writer of this memoir to 
becoming an active participant in the drama. I had gotten to know Raoul at the Institute 
for Advanced Study in Princeton, when I went there in 1955 after receiving my Ph.D. 
We were to go on to become lifelong friends and collaborators, publishing no less than 
13 joint papers on a wide variety of topics and over many years. But our substantive 
collaborations really took off from the periodicity theorems and their development into 
K-theory.

Among the many new topics flourishing in the 1950s, algebraic geometry was sharing 
the stage with topology, again due in large part to J.-P. Serre, who had applied sheaf 
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theory with Henri Cartan first in analytic geometry and then in algebraic geometry. The 
culmination of this work was the famous generalization of the classical Riemann–Roch 
theorem proved by Hirzebruch in December 1953. During the first of the influential 
Arbeitstagungen organized annually by Hirzebruch in Bonn, Alexandre Grothendieck 
expounded on his spectacular and beautiful generalization of the Hirzebruch theorem. 
This involved the introduction of the K-groups of an algebraic variety, groups whose 
definition was very abstract but that yet were simple and effective. Because I was, and 
remained, a regular attendee of the Bonn Arbeitstagung, I absorbed Grothendieck’s 
K-theory and, when I heard of Bott’s periodicity theorem, I eventually realized how to 
combine the two ideas. This led to “topological” K-theory, which I developed jointly with 
Hirzebruch and which rested in a fundamental way on Bott’s periodicity theorem.

We needed Bott’s help at this early stage, and he responded with a 1959 paper (Quelques 
remarques sur les théorèmes de periodicité) written, as he said later, “in fluent French.” 
He went on (Macpherson 1994):

Alas, the French is not mine, and I am ashamed to see that there is no 

reference to the kind translator. Mathematically [the paper] deals with the 

‘new’ K-theoretic formulation of the periodicity theorem. Grothendieck’s 

K-theory and his brilliant functorial proof of Riemann–Roch in the alge-

braic category had a tremendous effect on all our thinking. Nevertheless, 

the ideas of Atiyah and Hirzebruch, interpreting the periodicity theorems 

as ‘Kunneth’ formulae in an ‘extraordinary cohomology theory,’ came as 

a complete surprise to me! In one swoop my special computations had 

become a potential tool in all aspects of topology.

The periodicity theorem in the real case, with the period being 8, was subtler than the 
complex case when the periodicity was just 2. Bott and Shapiro had realized that this 
could best be understood through the structure of the Clifford algebras, which had the 
same periodicity in purely algebraic form. In 1964, in the paper “Clifford modules,” I 
joined forces with Bott (Shapiro, sadly, having died) to clarify the way the algebra and the 
topology were linked. This has since proved useful in index theory.

K-theory and its further developments, including the index theorem, were at the center 
of my subsequent collaborations with Bott. But we were so close in our mathematical 
tastes that, over the years, every time we met (Figure 2) a new joint venture would start, 
as will become clear in the rest of this memoir.
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Index theory

In 1962–1963 Isadore Singer and I were 
working on the index theorem for elliptic 
differential operators on compact mani-
folds (Atiyah and Singer, 1963). This 
effort had many ramifications and was 
so close to Bott’s interests that he soon 
joined our enterprise and played an active 
role in the many discussions that took 
place at Harvard and the Massachusetts 
Institute of Technology (MIT) during 
my two visits there in 1962 and 1964. 
He also spent the year with me in Oxford 
during 1965–1966.

Bott’s first contribution to this area, 
published in 1965, was a direct geometric 
verification of the index theorem for 
holomorphic vector bundles over homo-
geneous spaces (The index theorem for 
homogeneous differential operators). This 
arose naturally from his experience with 
Lie groups. Another key contribution 
was to the index problems for manifolds 
with boundary (The index problem for 
manifolds with boundary, 1964), which 
required a deeper understanding of boundary value problems. As a byproduct we also 
produced an elementary proof of the periodicity theorem (On the periodicity theorem 
for complex vector bundles, 1964.) I remember planning a talk on this topic at MIT that 
was rather abstract. It was only Bott’s insistence, at the eleventh hour, on searching out 
the essentials that made the talk genuinely “elementary.”

The first major extension of the index theorem, published in 1966, concerned the 
interplay between elliptic operators and fixed points of maps (A Lefschetz fixed-point 
formula for elliptic differential operators.) It was inspired by questions that Bott and I 
were asked by G. Shimura at a conference in Woods Hole in 1964. The general formula 
that eventually emerged was similar in appearance to the famous Lefschetz fixed-point 

Figure 2. Raoul Bott with Michael Atiyah,  
Oxford, 1975. 
(Photo courtesy the Bott family.)
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theorem, which relates the number of fixed points of a map to its action on cohomology. 
The elliptic version is a refinement in which the map is required to be compatible with 
the elliptic operator, and each fixed point contributes not an integer but a complex 
number calculated from the linearized action at the fixed point.

The fixed-point case has several beautiful applications, including a derivation of the 
Weyl formula for the characters of the irreducible representations of Lie groups. A very 
different application established an old conjecture of Paul Smith’s. This asserts that if 
a cyclic group of odd prime order acts on a sphere with just two fixed points, then the 
linear actions on the tangent spaces at these points are isomorphic. It was this wide range 
of applications that made our fixed-point theorem one of Bott’s favorite results.

Bott’s final contribution in this area was to help clarify the heat-equation approach 
to the index formula. Earlier algebraic computations had been very complicated and 
difficult to understand. With the use of classical invariant theory, Bott, V. K. Patodi, and 
I were able to present in 1973 a conceptually simple proof (On the heat equation and 
the index theorem). Bott’s expertise both in Riemannian geometry and invariant theory 
were crucial ingredients. The heat-equation proof of the index theorem has turned out 
to be very productive and, in particular, established a close link with work in theoretical 
physics. In subsequent years these links with physics were greatly strengthened, and they 
lay behind much of Bott’s later work.

Equivariant cohomology

Bott’s interest in Morse theory, together with his expertise in Lie groups, made it natural 
for him to be aware of the role of symmetry at critical points of functions or at fixed 
points of maps. One outcome of this was the systematic exploitation of equivariant coho-
mology in differential geometry.

Our joint 1984 paper (The moment map and equivariant cohomology) arose from our 
attempt to understand papers by Edward Witten on Morse theory, written from a physics 
perspective (Witten, 1982), and by Duistermaat and Heckman (1982) on the exactness 
of stationary-phase approximation. The methods were not really original but our presen-
tation brought several strands together and has subsequently been influential.

Another of our joint papers, published in 1982 (The Yang–Mills equation over Riemann 
surfaces), also used equivariant cohomology but in an infinite dimensional context 
inspired by physics. The outcome was a new derivation of the cohomology of the moduli 
space of vector bundles over a compact Riemann surface. This topic has been at the 
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center of much activity on the frontier between physics and geometry in recent years, 
and our paper has stimulated an extensive development.

Other results

My collaborations with Bott also included a digression into the question of lacunas for 
hyperbolic differential equations, published in 1970 (Lacunas for hyperbolic differential 
operators with constant coefficients,) an old topic going back to Christiaan Huygens and 
developed by Igor Petrovsky in the 1940s. The work of Petrovsky was difficult to follow 
and needed to be updated using the new topological methods of algebraic geometry. 
Bott and I were introduced to this problem by Lars Gårding, an authority on hyperbolic 
equations, and he essentially “commissioned” us to take on the project during a visit to 
Oxford in 1965.

An area in which Bott’s careful approach and geometric insight paid dividends was his 
discovery that when a manifold is foliated, the bundle of tangent vectors to the leaves 
of the foliation cannot be an arbitrary subbundle of the tangent bundle but must satisfy 
some global topological conditions. This fairly simple observation generated a substantial 
follow-up, leading to a whole new theory.

In a somewhat related area Bott collaborated with Graeme Segal to study the coho-
mology of the Lie algebra of vector fields on a manifold, which had been introduced by 
Israel Gelfand and D. B. Fuks. The result, published in 1977 (The cohomology of the 
vector fields on a manifold,) was to express the vector field cohomology as that of a space 
naturally associated to the manifold and its tangent bundle. In a sense the outcome was 
disappointing in that the Gelfand–Fuks invariants gave nothing new—they could be 
identified as homotopy invariants.

A very different collaboration much earlier was that between Bott and Shing-Shen 
Chern, in which they set out to generalize the classical Nevanlinna theory of mero-
morphic functions to higher dimensions. The published result, Hermitian vector bundles 
and the equidistribution of the zeroes of their holomorphic sections, was published in 
1965. A byproduct of their investigation was the Bott–Chern class, which is a complex 
refinement of the differential form of the Chern class. This has proved extremely useful in 
many subsequent developments.

In one of Bott’s last significant papers, published in 1989 (On the rigidity theorems of 
Witten), he and Clifford Taubes gave an elegant mathematical proof of Witten’s rigidity 
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theorem (Witten, 1987). This was the fruit of the exciting interaction during preceding 
years between geometers and physicists—an effort in which Bott took an active part.

Bott’s influence on theoretical physicists has been well described by Edward Witten:

I came to Harvard, where Raoul Bott was a professor, in the fall of 1976. 

This turned out to be just the period when physicists were starting to 

appreciate that a lot of modern mathematical ideas that we didn’t know 

much about were relevant to understanding quantum gauge theo-

ries. Raoul did a lot to educate me and my contemporaries. He loved 

explaining things and had a knack for picking out the key point that 

would make a difficult subject clear. Later on, I and many other physicists 

learned much of our differential topology from the [1982] book [Differen-
tial forms in algebraic topology] by Bott and Loring Tu.

In 1979, Raoul was invited to the summer school on particle physics at 

Cargèse, in Corsica. He began his lecture [Morse theoretic aspects of 

Yang–Mills theory, published in 1980] by saying that he was going  

to tell us about a favorite subject of his, which might be useful to us 

some day. The subject was Morse theory. Quite possibly, none of the  

physicists in attendance had ever heard of Morse theory, and certainly I 

I hadn’t. However, several years later, in studying a phenomenon known 

as spontaneous breaking of supersymmetry, I ran into some puzzling 

phenomena. At some point, a dim recollection of Bott’s lecture sprang to 

mind and it became clear that the phenomenon in question was closely 

related to the fact that, in Morse theory, a critical point of a function can 

exist for a good topological reason. This led to my work (Witten, 1982) 

relating supersymmetry to Morse theory.

In my paper on that subject, I tried to describe in terms of differen-

tial forms a second, superficially similar, supersymmetric construction. 

Unfortunately, the mathematical setting for this second construction was 

not clear. In hindsight, things might have been clearer if Bott had given 

another lecture in Cargèse! As it was, this construction was later put in 

its proper setting by Bott and Atiyah [The moment map and equivariant 

cohomology, published in 1984]. Bott went on to tutor me, and I believe 

other physicists, on the basics of equivariant cohomology, which has 
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turned out to have numerous 

applications in gauge theory and 

topological field theory.

Students

Bott attracted a large number of talented 
students during his many years at 
Harvard. They gravitated toward him 
because of his friendly informal manner 
as well as his obvious passion for beautiful 
mathematics. Two of his students, Stephen 
Smale and Daniel Quillen, went on to 
win Fields medals, and many others had 
distinguished academic careers. Just before 
Bott died he confided to me, with modest 
pride, that he had received a letter from a 
recent Nobel laureate who told him how 
inspired he had been by Bott’s teaching. 
This was George Akerlof (of the University 
of California, Berkeley), who shared the 
Nobel Prize in Economics for 2001.  
He wrote:

You probably do not remember but many years ago (39 to be exact) an 

economics student from MIT took your course in algebraic topology at 

Harvard. I was that student. I worked very hard in it and learned a great 

deal. You were not just a great teacher, but a fabulous teacher. What  

I learned in your course was the foundation of my whole career.

You did not just teach the technical field of homotopy theory, but 

showed students how to decompose problems into their essentials and 

their technical details. This, of course, was the same skill that [Robert] 

Solow’s papers demonstrated, and that I was learning separately in 

economics at MIT.

This year I was named corecipient of the Nobel Prize in Economics.  

I merely applied to economics the common sense about mathematics 

that I had learned from you.

Figure 3. Raoul Bott lecturing at the University 
of Bonn in 1969. 
(Photo by Wolfgang Vollrath.)
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I know that you are a great mathematician. I also want to thank you for 

being such a fine and caring teacher.

Harvard has “houses” modeled on the Oxford and Cambridge colleges, and it was no 
surprise to Bott’s friends when they heard that he had been appointed master of Dunster 
House. He and his wife Phyllis moved into the master’s residence, overlooking the 
Charles River, and took an enthusiastic part in student life. Some years earlier he had 
been approached about the mastership of St Catherine’s College, Oxford, where he had 
spent a sabbatical year and made a great impression. He declined the somewhat unreal-
istic offer but subsequently (1985) became an honorary fellow. In the same year he was 
Hardy lecturer of the London Mathematical Society.

Bott received many other honors and awards, including the Wolf Prize in Mathematics 
(2000) and the U.S. National Medal of Science (1987). He had honorary doctorates 
from Notre Dame, McGill, Carnegie Mellon, and Leicester Universities. He was a 
member of the National Academy of Sciences of the U. S. A. (elected in 1964) and a 
foreign associate of the French Academy of Sciences. Because he was too ill to come to 
London, arrangements were made so that I could admit him in California, shortly before 
he died, as a foreign member of the Royal Society.

Memorial

I can think of no better way to convey something of Bott’s personality than to reproduce 
here the text of the address I gave at the Harvard Memorial Church on January 29, 2006, 
soon after his death:

I first met Raoul over 50 years ago at the Institute for Advanced Study in 

Princeton, and it was an indication of the important part that Princeton 

played in his life that, despite his illness, he came back there last March 

and we met again at (the 75th anniversary of the institute.

Over those 50 years we became lifelong friends and worked together 

in many other places, including Harvard, Oxford, and Bonn, where we 

joined Fritz Hirzebruch’s annual jamboree. We traveled the world together 

to conferences in exotic places— India, Mexico, China, Hungary. I recall 

an event in Budapest when our bus was held up by a total traffic snarl. 

When time passed and the deadlock continued, Raoul took charge. 

He stood in the middle of the road and with great authority acted as a 
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policeman, skillfully directing the traffic and 

unlocking the jam—which showed he was a 

real Hungarian!

Even as a young man Raoul exuded charm 

and made an immediate impression on all 

he met. I remember when he was inter-

viewed in 1964 for a visiting fellowship at St. 

Catherine’s, my Oxford college; the master, 

Alan Bullock, was so attracted to him that 

he [feared] Raoul would turn down the 

offer, [and] he was delighted when Raoul 

accepted.

In our early years together, despite the fact 

that he was six years older than me, we 

were colleagues on the same plane. Iron-

ically, as we grew older the relationship 

subtly changed and he became more of 

an avuncular, or father, figure. I think it may have been the beard, but in 

fact he just grew into his natural role as a “paterfamilias.” He had indeed a 

large loving family of children and, eventually, grandchildren, and he had 

a parallel family of students and grand-students. With his large towering 

frame and his wide embrace he was really in his element as the head of 

these large and extended families. I became part of this family circle, of 

which Phyllis was, of course, a central figure, sharing nearly 60 years of 

married life with Raoul and keeping him under friendly control with her 

quiet humor. It is very appropriate that a joint portrait of Raoul and Phyllis, 

as comasters, now hangs in Dunster House.

It was impossible to work with Raoul without becoming entranced by 

his personality. Work became a joy to be shared rather than a burden to 

bear. Historians and biographers frequently try to make a sharp distinc-

tion between the life and work of the creative artist. No such separation 

makes sense for Raoul— his personality overflowed into his work, into his 

relations with collaborators and students, into his lecturing style, and into 

his writing. Man and mathematician were happily fused.

Expounding ideas simply 
was supremely important to 
him. He was a born teacher 
who knew how to engage 
his audience, getting them 
involved so that they could 
really understand. It is no 
accident that Raoul attracted 
so many talented students 
who went on into successful 
careers. Unlike some great 
mathematicians, he did not 
try to intimidate his students 
by exposing their ignorance.
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This is not the place to describe Raoul’s mathematics, but I should say 

something about the way he worked—his style. He loved to discuss 

mathematics, and we would spend happy hours together in front of a 

blackboard tossing ideas about and, at Raoul’s insistence, doing calcu-

lations. While he liked to see the big picture, he was never happier than 

when he found a good example to work on in detail. He was suspicious 

of hand waving or airy-fairy speculation. To him mathematics was a craft, 

where the artisan lovingly carved his handiwork in beautiful detail.

Expounding ideas simply was supremely important to him. He was a born 

teacher who knew how to engage his audience, getting them involved 

so that they could really understand. It is no accident that Raoul attracted 

so many talented students who went on into successful careers. Unlike 

some great mathematicians, he did not try to intimidate his students 

by exposing their ignorance. On the contrary, he would descend to 

their level and provide encouragement and advice to suit the individual 

student. When attending a seminar he would frequently ask an elemen-

tary question, even when he himself knew the answer, in order to help 

the more inhibited students in the audience.

He had great sensitivity to people and situations. I remember one occa-

sion when I wrote the draft introduction to a joint paper in which  

I referred to the “modest contribution” that each of us had made in earlier 

papers. He told me to remove the word “modest,” saying it was false 

modesty. He was of course quite right: genuine modesty does not adver-

tise itself.

Humor and laughter was an important part of Raoul’s character. He 

enjoyed recounting amusing episodes of the past, such as the time 

Stephen Smale got them trapped between the rising tide and a sheer 

cliff, or the time when he arrived in India without a visa but was given 

red-carpet treatment—while on our return journey I was incarcerated in 

quarantine at Cairo airport!

In any group he was always the center of attraction—like the sun, he radi-

ated warmth, and we planets circulated around. But beneath the jollity 

and humor there was a deeply serious side. On occasion Raoul would 
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turn on you a pensive penetrating look that seemed to see into your soul. 

He could see through pretensions or poses. He was anchored to the hard 

core of his beliefs, even though they rarely came to the surface. In Shake-

spearean terms, he was part Falstaff and part Hamlet but without the 

extremes of either, so that they happily coexisted.

His love of beauty in mathematics was reflected in his deep love of music. 

His enjoyment of life found its counterpart in the sparkle of Mozart, while 

his more serious side found its solace in the spirituality of Bach.

All of us who knew Raoul understood what a marvelous person he was, 

and anything we say is inadequate. But let me give the last word to my 

son Robin who, as a young teenager said, after meeting Raoul, “Now I 

know what is meant by charisma.”
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