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LARS VALERIAN AHLFORS

April 18, 1907–October 11, 1996

B Y  F R E D E R I C K  G E H R I N G

PERSONAL AND PROFESSIONAL HISTORY

LARS AHLFORS WAS BORN in Helsinki, Finland, on April 18,
1907. His father, Axel Ahlfors, was a professor of mechanical

engineering at the Institute of Technology in Helsinki. His
mother, Sievä Helander, died at Lars’s birth. As a newborn
Lars was sent to the Åland Islands to be taken care of by
two aunts. He returned to his father’s home in Helsinki by
the age of three.

At the time of Lars’s early childhood, Finland was under
Russian sovereignty but with a certain degree of autonomy,
and civil servants, including professors, were able to enjoy a
fairly high standard of living. Unfortunately, all this changed
radically during World War I, the Russian Revolution, and
the Finnish civil war that followed. There was very little
food in 1918, and Lars’s father was briefly imprisoned by
the Red Guard.

For historical reasons the inhabitants of Finland are
divided into those who have Finnish or Swedish as their
mother tongue. The Ahlfors family was Swedish speaking,
so Lars attended a private school where all classes were
taught in Swedish. He commented that the teaching of math-
ematics was mediocre, but credited the school with helping
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him become almost fluent in Finnish, German, and English,
and less so in French. A sister of Lars was two years ahead
of him in school. Hence Lars was able to learn high school
mathematics by doing her homework and by means of
clandestine visits to his father’s engineering library. Indeed,
the teachers eventually relied on Lars to provide problems
for the class.

Lars spent a summer vacation as a young student with a
Finnish-speaking family to improve his knowledge of Finnish.
He had hoped to pay for his keep that summer by teaching
mathematics, but having found no takers, he earned his
board by giving lessons to the children of the family in the
German language and playing the cello.

In 1924 Lars Ahlfors entered the University of Helsinki,
where his teachers were two internationally known math-
ematicians, Ernst Lindelöf and Rolf Nevanlinna. At that time
the university was still run on the system of one professor
for each subject. Lindelöf was the professor for mathematics.
There were no graduate courses then, and all advanced
reading was done under the supervision of Lindelöf. Lars
remembered well the Saturday mornings when he had to
visit Lindelöf in his home at 8 a.m. to be praised or scolded—
as the case may have been.

In the spring of 1928 Lars completed all examinations
for the master’s degree, and in the fall of the same year he
accompanied Nevanlinna to Zürich. Nevanlinna had been
invited to the Eidgenösische Technische Hochschule in
Zürich for a year to fill Hermann Weyl’s chair while Weyl
was on leave of absence. Lindelöf persuaded Lars’s father
to let his son accompany Nevanlinna to Zürich. Later Lars
emphasized the importance of this visit to Zürich: “I found
myself suddenly transported from the periphery to the center
of Europe.”

Nevanlinna’s course of lectures at Zürich was Lars’s first
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exposure to contemporary function theory, and he became
“addicted” to complex analysis. Among other things, Nevanlinna
introduced the class to a 21-year-old conjecture made by
the French mathematician Denjoy on the asymptotic values
of an entire function, namely that an entire function of
order k can have at most 2k finite asymptotic values. Lars
created a sensation in the mathematical world when he
found a different way to approach this problem and obtained
a beautiful proof of this conjecture by means of conformal
mapping (1929). His name became known to all those work-
ing in this area and, as he remarked later, “my future was
made.” Lars returned to Finland and undertook his first
teaching assignment as lecturer at Åbo Akademi, the Swedish-
language university in Turku. At the same time he began
work on his thesis, which he defended in the spring of
1930.

During 1930-1932 Lars made several trips to continental
Europe, including a longer stay in Paris supported by a
fellowship from the Rockefeller Foundation. In 1933 he
returned to Helsinki as an adjunct professor at the University
of Helsinki. That same year he married Erna Lehnert, an
Austrian who with her parents had first settled in Sweden
and then in Finland. Half a century later, in the preface to
his Collected Papers, Lars wrote, “This was the happiest and
most important event in my life.”

In 1935 Lars was first offered and then accepted a three-
year appointment at Harvard University as a visiting lecturer.
One year later, at the quadriennal International Congress
of Mathematicians in Oslo, he was awarded a Fields Medal,
the equivalent for mathematicians of a Nobel Prize.

During the 1924 International Congress of Mathematicians
in Toronto, the president of the congress, Professor J. C.
Fields of Canada, had proposed that two gold medals be
awarded at each International Congress of Mathematicians
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“for outstanding achievements in mathematics.” The winners
were to be selected by an international jury. The 1932
Congress in Zürich had approved Fields’s proposal and named
the medals after Fields, who had died just before the 1932
Congress. The first two Fields Medals were then awarded to
Lars Ahlfors and Jesse Douglas of the United States in 1936.
That he was to be awarded a Fields Medal came as a com-
plete surprise for Lars. Indeed, he was told officially that he
was to receive this honor only hours before the formal award
ceremony.

Lars Ahlfors’s appointment at Harvard was for three years.
He and his wife had found life in Cambridge very reward-
ing and they had to decide in 1938 whether to stay at Harvard
or return to Finland, where he had been offered a professor-
ship at the University of Helsinki. In the end, patriotic feelings
and loyalty to his teachers drew them back to Helsinki,
where they had a happy year.

Unfortunately, World War II broke out in 1939, and
Lars’s wife and two children were evacuated and found refuge
with relatives in Sweden. Helsinki was bombarded, the
university was closed for lack of male students, but other-
wise life went on. Lars was never called to military duty
because of an earlier physical condition, and it is quite
ironic that one of his best papers was written while he was
in an air raid shelter.

Soon after the winter war the Ahlfors family was able to
return to Helsinki and resume a seemingly normal life. How-
ever, politics in Finland took an unfortunate turn, and, when
Hitler attacked the Soviet Union in 1941, Finland was his
ally. When the Russians were able to repulse the Germans,
they intensified the war in Finland with foreseeable results.
The Finnish-Russian war ended with a separate armistice in
September 1944, and Finland was forced to expel the German
troops that had been stationed there.
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The war continued off and on until 1944, and Lars felt
he could not remain in Finland without sacrificing his
research. He therefore accepted an invitation to the University
of Zürich and, after a very difficult journey, joined their
faculty in the spring of 1945. He and his wife found the
postwar era a difficult time for strangers to take root in
Switzerland. Hence in 1946 Lars was delighted to accept an
invitation to return to Harvard, where he remained for the
rest of his career.

We consider next excerpted descriptions of three aspects
of Ahlfors’s research by Robert Osserman, Irwin Kra, and
the present author, respectively, which appear in Volume 45
of the Notices of the American Mathematical Society.

CONFORMAL GEOMETRY

BY ROBERT OSSERMAN

There are two directions in which one can pursue the
relations between Riemann surfaces and Riemannian mani-
folds. First, if a two-dimensional Riemannian manifold is
given, then not only lengths but also angles are well defined,
so that it inherits a conformal structure. Furthermore, there
always exist local isothermal coordinates, which are local
conformal maps from the plane into the surface. The set of
all such local maps forms a complex structure for the mani-
folds, which can then be thought of as a Riemann surface.
One then has all of complex function theory to bring to
bear in studying the geometry of the surface. The most
notable successes of this approach have been in the study
of minimal surfaces, as exemplified in the contributions to
that subject made by some of the leading function theorists
of the nineteenth century: Riemann, Weierstrass, and Schwarz.

In the other direction, given a Riemann surface one can
consider those metrics on the surface that induce the given
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conformal structure. By the Koebe uniformization theorem,
such metrics always exist. In fact, for “classical Riemann
surfaces” of the sort originally considered by Riemann, which
are branched covering surfaces of the plane, there is the
natural Euclidean metric obtained by pulling back the
standard metric on the plane under the projection map.
One can also consider the Riemann surface to lie over the
Riemann sphere and to lift the spherical metric to the surface.
Both metrics prove very useful for obtaining information
about the complex structure of the surface.

For simply connected Riemann surfaces the Koebe
uniformization theorem tells us that they are all conformally
equivalent to the sphere, the plane, or the unit disk. Since
the first case is distinguished from the other two by the
topological property of compactness, the interesting question
concerning complex structure is deciding in the noncompact
case whether a given surface is conformally the plane or
the disk, which became known as the parabolic and hyperbolic
cases, respectively. In 1932 Andreas Speiser formulated the
“problem of type,” which was to find criteria that could be
applied to various classes of Riemann surfaces to decide
whether a given one was parabolic or hyperbolic. That
problem and variants of it became a central focus of Ahlfors’s
work for several decades. He started by obtaining condi-
tions for a branched surface to be of parabolic type in terms
of the number of branch points within a given distance of a
fixed point on the surface, first using the Euclidean metric
and later realizing that a much better result could be obtained
from the spherical metric. But perhaps his main insight was
that one could give a necessary and sufficient condition by
looking at the totality of all conformal materics on the surface.

The problem of type may be viewed as a special case of
the general problem of finding conformal invariants. There
one has some class of topologically defined objects, such as
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a simply or doubly connected domain or a simply connected
domain with boundary and four distinguished points on
the boundary, and one seeks to define quantities that
determine when two topologically equivalent configurations
are conformally equivalent. One example is the “extremal
length” of a family of curves in a domain, which is defined
by a minimax expression in terms of all conformal metrics
on the domain and is thereby automatically a conformal
invariant. Ahlfors and Beurling, first independently and then
jointly, developed this idea into a very useful tool that has
since found many further applications.

From the first, Ahlfors viewed classical results like Picard’s
theorem and Bloch’s theorem as special cases of the problem
of type, in which such conditions as the projection of a
Riemann surface omitting a certain number of points would
imply that the surface was hyperbolic and hence could not
be the image of a function defined in the whole plane. He
felt that the Nevanlinna theory should also fit into that
framework. Finally, in 1935 he produced one of his most
important papers, in which he used the idea of specially
constructed conformal metrics (or “mass distributions” in
the terminology of that paper) to give his own geometric
version of Nevanlinna theory. When he received his Fields
Medal the following year, Carathéodory remarked that it
was hard to say which was more surprising: that Nevanlinna
could develop his entire theory without the geometric picture
to go with it or that Ahlfors could condense the whole
theory into 14 pages.

Not satisfied that he had yet got to the heart of Nevanlinna
theory from a geometric point of view, Ahlfors went on to
present two further versions of the theory. The first, also
from 1935, was one of his masterpieces: the theory of cover-
ing surfaces (1935). The guiding intuition of the paper is
this: If a meromorphic function is given, then the funda-
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mental quantities studied in Nevanlinna theory, such as the
counting function, determined by the number of points
inside a disk of given radius where the function assumes a
given value, and the Nevanlinna characteristic function,
measuring the growth of the function, can be reinterpreted
as properties of the Riemann surface of the image of the
function, viewed as a covering surface of the Riemann sphere.
The counting function, for example, just tells how many
points in the part of the image surface given by the image
of the disk lie over the given point on the sphere. The
exhaustion of the plane by disks of increasing radii is replaced
by an exhaustion of the image surface. Ahlfors succeeded
in showing that by using a combination of metric and topo-
logical arguments (the metric being that of the sphere and
its lift to the covering surface), one can not only recover
basically all of standard Nevanlinna theory but that—quite
astonishingly—the essential parts of the theory all extend
to a far wider class of functions than the very rigid special
case of meromorphic functions, namely, to functions that
Ahlfors calls “quasiconformal”; in this theory the smoothness
requirements may be almost entirely dropped, and asymp-
totically, images of small circles—rather than having to be
circles—can be arbitrary ellipses as long as the ratio of the
radii remains uniformly bounded.

Of his three geometric versions of Nevanlinna theory,
Ahlfors has described the one on covering surfaces as a
“much more radical departure from Nevanlinna’s own
methods” and as “the most original of the three papers,”
which is certainly the case. (According to Carathéodory that
paper was singled out in the decision of the selection com-
mittee to award the Fields Medal to Ahlfors.) Nevertheless,
the last of the three, published two years later in 1937, was
destined to be probably at least as influential (1937,1). Here
the goal was to apply the methods of differential geometry
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to the study of covering surfaces. The paper is basically a
symphony on the theme of Gauss-Bonnet. The explicit
relation between topology and total curvature of a surface,
now called the “Gauss-Bonnet theorem,” had not been around
all that long at that time, perhaps first appearing in Blaschke’s
1921 Vorlesungen über Differentialgeometrie.

It occurred to Ahlfors that if one hoped to develop a
higher-dimensional version of Nevanlinna theory, it might
be useful to have a higher dimensional Gauss-Bonnet formula,
a fact that he mentioned to André Weil in 1939, as Weil
recounts in his collected works. When Weil spent the year
1941-1942 at Haverford, where Allendoerfer was teaching,
he heard of Allendoerfer’s proof of the higher-dimensional
Gauss-Bonnet theorem; and remembering Ahlfors’s suggestion,
he worked with Allendoerfer on their joint paper, proving
the generalized Gauss-Bonnet theorem for a general class
of manifolds that need not be embedded. That in turn led
to Chern’s famous intrinsic proof of the general Gauss-Bonnet
theorem. As for Ahlfors’s idea of adapting the method to
obtain a higher-dimensional Nevanlinna theory, that had to
wait until the paper by Bott and Chern in 1963.

The year following his Gauss-Bonnet Nevanlinna theory
paper, Ahlfors published a deceptively short and unassuming
paper called “An Extension of Schwarz’s Lemma” (1938).
The main theorem and its proof take up less than a page.
That is followed by two brief statements of more general
versions of the theorem and then four pages of applica-
tions. Initially it was the applications that received the most
attention and that Ahlfors was most pleased with, since they
were anything but a straightforward consequence of the
main theorem. That is particularly true of the second appli-
cation, which gives a new proof of Bloch’s theorem in a
remarkably precise form. Bloch’s theorem states that there
is a uniform constant B such that every function analytic in
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the unit disk, and normalized so that its derivative at the
origin has modulus 1, must map some subdomain of the
unit disk one-to-one conformally onto a disk of radius B.
The largest such constant B is known as Bloch’s constant.
In 1937 Ahlfors and Grunsky published a paper giving an
upper bound for B that they conjectured to be the exact
value for this constant (1937,2). The conjectured extremal
function maps the unit disk onto a Riemann surface with
simple branch points in every sheet over the lattice formed
by the vertices obtained by repeated reflection over the
sides of an equilateral triangle, where the center of the unit
disk maps onto the center of one of the triangles. One
obtains the map by taking three circles orthogonal to the
boundary of the unit disk that form an equilateral triangle
centered at the origin with 30° angles and mapping the
interior of that triangle onto the interior of a Euclidean
equilateral triangle. Under repeated reflections one gets a
map of the entire unit disk onto the surface described.
Ahlfors and Grunsky write down an explicit expression for
the function of that description with the right normaliza-
tion at the origin and thereby get the size of the largest
circular disk in the image, which is just the circumscribed
circle of one of the equilateral triangles whose vertices are
the branch points of the image surface. The size of that
circle turns out to be approximately .472.

The above mentioned extension for the Schwarz lemma

yielded the lower bound   3 /4 =.433... for the Bloch con-
stant, a bound that has been improved by only .0001 in the
intervening 67 years.

When his collected papers were published in 1982, Ahlfors
commented that this particular paper “has more substance
than I was aware of.” He also said, “Without applications
my lemma would have been too lightweight for publication.”
It is a lucky thing for posterity that he found applications
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that he considered up to his standard, since it would have
been a major loss for us not to have the published version
of the Ahlfors-Schwarz lemma. As elegant and important as
his applications were, I believe that they have long ago been
dwarfed by the impact of the lemma itself, which has proved
its value in countless other applications and has served as
the underlying insight and model for vast parts of modern
complex manifold theory, including Kobayashi’s introduction
of the metric that now bears his name and Griffith’s geo-
metric approach to higher dimensional Nevanlinna theory.
It demonstrates perhaps more strikingly than anywhere else
the power that Ahlfors was able to derive from his unique
skill in melding the complex analysis of Riemann surfaces
with the metric approach of Riemannian geometry.

KLEINIAN GROUPS

BY IRWIN KRA

Of the many significant contributions of Lars Ahlfors to
the modern theory of Kleinian groups, I will discuss only
two, which are closely related: the Ahlfors finiteness theory
and the use of Eichler cohomology as a tool for proving
this and related results. Both originated in the seminal paper
(1964).

For the purposes of this note, a Kleinian group G will
always be finitely generated, nonelementary, and of the
second kind. Thus, G consists of Möbius transformations, a
subgroup of PSL(2,C), and it acts discontinuously on a
nonempty maximal open set Ω ⊂ C ∪ ∞, the region of
discontinuity of G, whose complement Λ in C ∪ ∞, is an
uncountable perfect nowhere dense subset of the Riemann
sphere.

In the early 1960s not much was known about Kleinian
groups. Around the beginning of this century, Poincaré sug-
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gested a program for studying discrete subgroups of PSL(2,C);
Poincaré’s program was based on the fact that PSL(2,R)
acts on the upper half plane H2, a model for hyperbolic
2-space. The quotient of H2 by a discrete subgroup (a
Fuchsian group) of PSL(2,R) is a 2-dimensional orbifold (a
Riemann surface with some “marked” points). By analogy
PSL(2,C) acts on H3, hyperbolic 3-space, and the quotient
of H3 by a torsion free discrete subgroup of PSL(2,C) is a
3-dimensional hyperbolic manifold. The study of subgroups
of PSL(2,C) was successful because of its connection to
classical function theory and to 2-dimensional topology and
geometry, about which a lot was known, including the
uniformization theorem classifying all simply connected
Riemann surfaces. Poincaré’s program was to take advantage
of the connection of PSL(2,C) to 3-dimensional topology
and geometry to study groups of Möbius transformations.
However, in 1965 very little was known about hyperbolic
3-manifolds. Research in the field seemed to be stuck and
going nowhere. Ahlfors completely ignored Poincaré’s pro-
gram and took a different route to prove the finiteness
theorem. He used complex analytic methods and his result
described the Riemann surfaces that can be represented by
a Kleinian group. About 15 years later in the mid-1970s, as
a result of the fundamental contributions of W. Thurston
(1982), 3-dimensional topology came to the forefront in
the study of Kleinian groups.

The history of Ahlfors’s work on Kleinian groups is also
part of a remarkable collaboration between Lars Ahlfors
and Lipman Bers. Although they coauthored only one paper
(1960), their work and the work of many of their students
was intertwined. See, for example, Kra (1996). Ahlfors’s
finiteness theorem says that the ordinary set Ω of a finitely
generated Kleinian group G factored by the action of the
group is an orbifold of finite type, finitely many “marked”
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points and compactifiable as an orbifold by adding a finite
number of points.

Bers (1965) reproved an equivalent known result in the
Fuchsian case, a much simpler case to handle. The finite-
ness theorem for PSL(2,R) had been known for a long time,
and Bers reproved it using modern methods, Eichler
cohomology. Bers constructs Eichler cohomology classes from
analytic potentials by integrating cusp forms sufficiently many
times, using methods developed by Eichler (1957) for number
theory.

Ahlfors generalized Bers’s method to a much wider class
of subgroups of PSL(2,C). This generalization was completely
nontrivial. It required the passage from holomorphic
potentials to smooth potentials. This involved a conceptual
jump forward—a construction of Eichler cohomology classes
via an integral operator, producing a conjugate linear map
a that assigns an Eichler cohomology class a(f) to a bounded
holomorphic q-form f for the group G. In addition, there
appeared a very difficult technical obstacle that Ahlfors had
to surmount to prove the injectivity of a. To do so Ahlfors
introduced a mollifier, a function used to construct an
approximate identity. Ahlfors worked only with the case
q = 2. Using a modified Cauchy kernel, he constructed a
potential for l2-2q φ  a continuous function on C whose  z

derivative is l2-2q φ , where is l a weight function.
In his proof of the finiteness theorem (1964), Ahlfors

omitted the case of infinitely many thrice-punctured spheres
appearing in Ω/G. Such surfaces admit no moduli deforma-
tions and alternatively carry no nontrivial integrable quadratic
differentials. This case was covered in subsequent papers of
Bers, Greenberg, and Ahlfors. Ahlfors also initially limited
his work to quadratic differentials, in part because this case
and the abelian case are the only ones with geometric
significance. Perhaps more significantly, it was Ahlfors’s style
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to make the pioneering contributions to a field and leave
plenty of room for others to continue in the same area. In
this particular case much remained to be done.

Bers saw that if he studied the more general case of
q-differentials, he would be able to improve on the results
of Ahlfors and get quantitative versions of the finiteness
theorem that have become known as the Bers area theo-
rems. The first of these (Bers, 1967) implies that if G is
generated by N-motions, then

Area (Ω/G) ≤ 4p (N – 1).

Since the minimal area of a hyperbolic orbifold is p/21,
Bers’s area theorem gives an upper bound on the number
of connected Riemann surfaces represented by a non-
elementary Kleinian groups as 84(N – 1). Ahlfors lowered
that bound to 18(N – 1) (1968). Even after some important
work of Abikoff, there is still no satisfactory bound on the
number of surfaces that a Kleinian group represents, espe-
cially if one insists on using only 2-dimensional methods.
Bers’s paper (1967) also showed that the thrice-punctured
spheres issue can be resolved “without new ideas.” It, together
with Ahlfors’s discoveries on Kleinian groups, led 15 years
later to work on the vanishing of Poincaré and relative
Poincaré series.

The so-called measure zero problem first surfaced dur-
ing a conference at Tulane in 1965, the first of a series of
periodic meetings, roughly every four years, of researchers
in fields related to the mathematical interests of Lars Ahlfors
and Lipman Bers. In his 1964 paper Ahlfors remarked that
perhaps of greater interest than the theorems he had been
able to prove were the ones he was not able to prove. First
of these was the assertion that the limit set of a finitely
generated Kleinian group has two-dimensional Lebesgue
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measure zero. This has become known as the Ahlfors measure
zero conjecture. It is still unsolved, although important work
on it has been done by Ahlfors, Maskit, Thurston, Sullivan,
and Bonahan. In some sense the problem has been solved
for analysts by Sullivan (1980), who showed that a non-
trivial deformation of a finitely generated Kleinian group
cannot be supported entirely on its limit set; topologists are
still interested in the measure zero problem. Formulae in
Ahlfors’s attempt (1982) to establish the measure zero con-
jecture led Sullivan to prove a finiteness theorem on the
number of maximal conjugacy classes of purely parabolic
subgroups of a Kleinian group.

The measure zero problem not only opened up a new
industry in the Kleinian groups “industrial park,” it also
revived the connection with 3-dimensional topology follow-
ing the fundamental work of Marden and Thurston. It showed
that Poincaré was not all wrong when he thought we could
study Kleinian groups by 3-dimensional methods.

The second theorem that Ahlfors had wanted to establish
in his 1964 paper can be rephrased in today’s language to
say that a finitely generated Kleinian groups is geometrically
finite. A counter-example was later produced by Greenberg.

QUASICONFORMAL MAPPINGS

BY FREDERICK GEHRING

In 1982 Birkhäuser Boston published two volumes of
Lars Ahlfors’s collected papers and his fascinating commen-
taries on them. Volume 2 contains 43 articles. Twenty-one
of these are directly concerned with quasiconformal mappings
and Teichmüller spaces, 12 with Kleinian groups, and 10 with
topics in geometric function theory. This distribution illus-
trates the dominant role that quasiconformal mappings played
in this part of Ahlfors’s work. Moreover, quasiconformal
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mappings played a key role in several other papers, for
example, the important finiteness theory for Kleinian groups.
For this reason I have chosen quasiconformal mappings as
the subject of the final part of this survey. In particular, I
will consider four papers on this subject that have had great
impact on contemporary analysis.

ON QUASICONFORMAL MAPPINGS (1954)

In his commentary on this paper Ahlfors wrote, “It had
become increasingly evident that Teichmüller’s ideas would
profoundly influence analysis and especially the theory of
functions of one complex variable. . . . The foundations of
the theory were not commensurate with the loftiness of
Teichmüller’s vision, and I thought it was time to reexam-
ine the basic concepts.” The quasiconformal mappings con-
sidered by Grötzsch and Teichmüller were assumed to be
continuously differentiable except for isolated points or small
exceptional sets. Teichmüller’s theorem concerned the nature
of the quasiconformal mappings between two Riemann
surfaces S and S′ with minimum maximal dilatation. This
and the fact that any useful theory that generalizes conformal
mappings should have compactness and reflection properties
led Ahlfors to formulate a geometric definition that was
free of all a priori smoothness hypotheses.

A quadrilateral Q is a Jordan domain Q with four distin-
guished boundary points. The conformal modulus of Q , de-
noted by mod(Q), is defined as the side ratio of any
conformally equivalent rectangle R. Grötzsch showed that
if f : D → D′ is K-quasiconformal in the classical sense, then

    

1
K

 mod(Q) ≤ mod(f (Q )) ≤ K mod(Q) (1)

for each quadrilateral Q ⊂ D. Ahlfors used this inequality to
define his new class of quasiconformal mappings: a homeo-
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morphism f : D → D′ is K-quasiconformal if (1) holds for
each quadrilateral Q ⊂ D. Ahlfors then established all of
the basic properties of conformal mappings for this general
class of homeomorphisms, including a uniform Hölder esti-
mate, a reflection principle, a compactness property, and
an analogue of the Hurwitz theorem. He did all of this in
nine pages. The major part of this article was, of course,
concerned with a statement, several interpretations, and a
proof of Teichmüller’s theorem.

In his commentary on this paper Ahlfors modestly wrote,
“My paper has serious shortcomings, but it has nevertheless
been very influential and has led to a resurgence of interest
in quasiconformal mappings and Teichmüller theory.”

This is an understatement. Ahlfors’s exposition made
Teichmüller’s ideas accessible to the mathematical world
and resulted in a flurry of activity and research in the area
by scientists from several different fields, including analysis,
topology, algebraic geometry, and even physics.

Next Ahlfors’s geometric approach to quasiconformal
mappings stimulated analysts to study this class of mappings
in the plane, in higher-dimensional Euclidean spaces, and
now in arbitrary metric spaces. His inspired idea to drop all
analytic hypotheses eventually led to striking applications
of these mappings in other parts of complex analysis such
as discontinuous groups, classical function theory, complex
iteration, as well as in other fields of mathematics, includ-
ing harmonic analysis, partial differential equations, differ-
ential geometry, and topology.

THE BOUNDARY CORRESPONDENCE UNDER QUASICONFORMAL

MAPPINGS (1956)

In the previous paper Ahlfors proved that a quasi-
conformal mapping f : D → D’ between Jordan domains has
a homeomorphic extension to their closures. A classical
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theorem due to F. and M. Riesz implies that the induced
boundary correspondence f is absolutely continuous with
respect to linear measure whenever ∂D and ∂D′ are rectifi-
able and f is conformal. Mathematicians asked whether this
conclusion holds when f is K – quasiconformal.

By composing f with a pair of conformal mappings, one
can reduce the problem to the case where D = D′ = H,
where H is the upper half plane and f(∞) = ∞. Next if x
and t are real with t > 0 and if Q is the quadrilateral with
vertices at x – t, x, x + t, ∞, then mod(Q) = 1 and inequality
(1) implies that

    

1
λ

φ χ φ χ
φ χ φ χ

λ≤
+( ) − ( )

( ) − −( )
≤

t

t
(2)

where l = l(K). Inequality (2) is a quasisymmetry condi-
tion that many thought would imply that f is absolutely
continuous.

In 1956 Ahlfors and Beurling published the paper cited
above in which they exhibit for each K > 1 a K – quasi-
conformal mapping f : H → H for which the boundary
correspondence f : ∂H → ∂H is completely singular. The
importance of this example was, however, overshadowed by
the authors’ main theorem, which showed that inequality
(2) characterizes the boundary correspondences induced
by quasiconformal self-mappings of H. The sufficiency part
consisted in showing that the remarkable formula

    
f z

y
x t x t dt

y
x t x t dt

y y

( ) = +( ) + −( )[ ] + +( ) + −( )[ ]∫ ∫1
2

1
2

0 0

φ φ φ φ (3)

yields a K – quasiconformal self-mapping of H with K = K(l)
whenever f satisfies (2). Moreover, f is a hyperbolic quasi-
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isometry of H, a fact that turns out to have many important
consequences.

In 1962 it was observed that a quasiconformal self-mapping
of the n-dimensional upper half space Hn induces a quasi-
conformal self-mapping of the (n – 1)–dimensional boundary
plane ∂Hn. This fact, for the case n = 3, was an important
step in the original proof of Mostow’s important rigidity
theorem. It was then natural to ask if every quasiconformal
self-mapping f of ∂  Hn admits a quasiconformal extension
to Hn. This question was eventually answered in the affirmative
by Ahlfors in 1963 for the case when n = 3, by Carleson in
1972 when n = 4, and by Tukia-Väisälä in 1982 for all n ≥ 3.

RIEMANN’S MAPPING THEOREM FOR VARIABLE METRICS (1960)

If f : D → D is K – quasiconformal according to (1), then
f is differentiable with fz ≠  0 a.e in D and

  
µ f

z

z

f

f
= (4)

is measurable with

    
µ f k

K
K

≤ = −
+

<1
1

1 (5)

a.e. in D. The complex dilatation mf determines f uniquely up
to post composition with a conformal mapping. The main
result of this article, joint with Lipman Bers, states that for
any function m that is measurable with |m| ≤ k < 1 a.e. in D,
there exists a K – quasiconformal mapping f of D that has m
as its complex dilatation. Moreover, if f is suitably normalized,
then f depends holomorphically on m.

The above result, known by many as the “measurable
Riemann mapping theorem,” has proved to be an enor-
mously effective tool in analysis. It is a cornerstone for the
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study of Teichmüller space, it was the key for settling several
outstanding questions of classical function theory including
Sullivan’s solution of the Fatou-Julia problem on wandering
domains, and it currently plays a major role in the study of
iteration of rational functions.

Unfortunately, as we all know, important theorems in
mathematics sometimes become definitions. This theorem
may already have become a verb in complex dynamics. For
at a plenary lecture at the International Congress of Math-
ematicians in 1986 a distinguished French mathematician
Adrien Douady was heard to explain that “before mating
two polynomials, one must first Ahlfors-Bers the structure.”

QUASICONFORMAL REFLECTIONS (1963)

A Jordan curve C is said to be a quasicircle if it is the
image of a circle or line under a quasiconformal self-mapping
of the extended complex plane. A domain D is a quasidisk if
∂D is a quasicircle. Quasicircles can be very wild curves.
Indeed, for each constant 0 < a < 2 there exists a quasicircle
C with Hausdorff dimension at least a.

Nevertheless, the first theorem of this elegant paper con-
tains the following remarkable characterization for this class
of curves. A Jordan curve C is a quasicircle if and only if
there exists a constant b such that

    z z b z z1 2 1 3− ≤ − (6)

for each ordered triple of points z1, z2, z3 ∈ C. The proof for
the sufficiency of (6) depends on the fact that the function
in (3) is a hyperbolic quasi-isometry.

The fact that quasicircles admit such a simple geometric
description is one of the reasons why these curves play an
important role in many different areas of analysis. Inequality
(6) is universally known as the “Ahlfors condition” and many
regard it as the best way to define the notion of a quasicircle.
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The second main result of this paper asserts that the set S
of Schwarzian derivatives
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f
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of conformal mappings f that map the upper half plane H
onto a quasidisk D is an open subset of the Banach space of
holomorphic functions f with norm

    
Φ Φ

H
H

z y= ( )sup
2 2 (8)

This fact is the key step in proving that the Bers universal
Teichmüller space T(1) is the interior of S with the topol-
ogy induced by the norm (8). It also led to another surprising
connection between quasiconformal mappings and classical
function theory, namely, that a simply connected domain D
is a quasidisk if and only if each function f, analytic with
small Schwarzian derivative Sf in D, is injective. Here the
size of Sf is measured by

    
S S z zf

D
f D= ( ) ( )−sup

2 2ρ (9)

where rD is the hyperbolic metric in D.
Lars’s beautiful paper on quasiconformal reflections

pointed out how these mappings occur naturally in many
different areas of mathematics. Lars lectured on this material
at the Forschungs Institute at Oberwolfach, Germany, in
1963. He, Professor Olli Lehto of the University of Helsinki,
and I were to speak the same morning. After several hours
of socializing and wine the evening before, Olli and I tried
to excuse ourselves so that we could get some sleep before
our talks. We were told by Lars that that “was a very silly
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idea indeed” and that it would be far better to relax and
drink with the pleasant company. The next day Lars’s talk
went extremely well and he was asked if he believed that
staying up late always improved his lectures. “I am not sure,”
he replied, “but at least they always sound better to me!”

Quasiconformal mappings appear first under this name
in Ahlfors’s 1935 paper on covering surfaces, the famous
paper for which he received the Fields Medal in 1936. In
discussing Lars’s work, Carathédory said that this article
opened a completely new chapter in analysis, one that could
be called “metric topology.” In a commentary on this article
Lars wrote, “Little did I know at the time what an important
role quasiconformal mappings would come to play in my
own work.”

Lars’s geometric approach to quasiconformal mappings
stimulated their development in higher dimensional Euclidean
space and recently in general spaces, such as the Heisenberg
and Carnot groups. The fact that this class is so natural and
flexible has led to striking applications to Kleinian groups,
classical function theory, complex dynamics, and to other
parts of mathematics, including harmonic analysis, differ-
ential geometry, elasticity, and topology.

The class of quasiconformal mappings offers a stripped-
down picture of the geometric essentials of complex function
theory and, as such, admits applications of these ideas to
many other parts of analysis and geometry. They constitute
just one illustration of the profound and lasting effect that
the deep, central, and seminal character of Lars’s research
has had on the face of mathematics.

FINAL REMARKS

In addition to the Fields Medal he received in 1936,
Lars was awarded an International Prize from the Wihuri
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Foundation of Finland in 1968, an award also known as the
Sibelius Prize when given to composers.

He was honored with the Wolf Prize in Jerusalem in
1981. In describing the mathematical achievements of the
prizewinner, the jury ended its report with the following
final comment: “Everyone working today in complex analysis
is in some sense a student of Ahlfors.”

At each International Congress of Mathematicians it is
customary for the host country to nominate its most presti-
gious mathematician as honorary president of the congress.
This congress was held in the United States in 1986, 50 years
after Lars had been awarded the Fields Medal in Oslo. At
this time Lars was asked by his American colleagues to serve
as the honorary president of this meeting in recognition of
his achievements in research.

Lars was very generous with his time and always glad to
talk with and advise young students and mathematicians.
He has also had a powerful and lasting influence in his
field through the aid and direction he gave to the 24 doctoral
students who wrote theses under his direction as well as to
at least an equal number of postdoctoral visitors and many
close associates who benefited greatly from the opportunity
to consult with him on problems of common interest. At a
conference held in Storrs, Connecticut, to commemorate
his seventy-fifth birthday, Lars remarked that “retirement is
wonderful. I can’t perish any more, so I don’t have to
publish!” The upshot of his remark was that he could now
devote himself full time to understanding the new develop-
ments in his field without the pressure of having to write
them up. At 75 Lars was devoting himself to learning the
newest ideas in the subject!

Lars died in Pittsfield, Massachusetts, in October 1996. He
was survived by his wife, Erna, and three daughters, Cynthia,
Vanessa, and Caroline. A son, Christopher, died in infancy.
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