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Initially, Doob thought he would write his thesis under Stone but ended up writing it 
under J. L. Walsh when Stone said that he did not have an appropriate new problem to 
suggest. Doob’s earliest work was thus focused on refined questions, of the Fatou type, 
about the boundary behavior of analytic functions.

A freshly minted mathematics Ph.D. faced a tough job market in 1932, but, with 
the backing of Birkhoff and Stone, Doob won a two-year National Research Council 
Fellowship that enabled him move to New York, where his wife was in medical school. 

Joseph Leo Doob was born in Cincinnati, Ohio, and raised 
in New York City. For much of his career, he was the leading 
American-born probabilist, a status reflected by his elec-
tion as president of the Institute of Statistics in 1950 and 
as president of the American Mathematics Society in 1963. 
In addition, he was a member of the American Academy of 
Arts and Sciences, the National Academy of Sciences, and 
the French Academy of Science; and a fellow of the Royal 
Statistical Society. He was a recipient of the Steele Prize 
from the American Mathematics Society and the National 
Medal of Science from President Jimmy Carter.

Despite his many honors, Doob was a sincerely modest 
man who shunned adulation and took as much pride 
in his 25-year appointment as Commissar of the Urba-
na-Champaign Saturday Hike as he did in his presidencies 
of learned societies. His modesty did not spring from lack of confidence. He entered 
Harvard University as a freshman at age 16 and left with a Ph.D. six years later. Although 
the Harvard mathematics faculty had several luminaries, Doob was never cowed by them. 
He sat in on a course that G. D. Birkhoff gave on his mathematical theory of aesthetics and 
dropped out when he decided that Birkhoff’s formulation was not sufficiently rigorous.  
A large part of what Doob learned in his two years as a graduate student he absorbed 
while typing the manuscript of Marshall Stone’s famous treatise on linear operators.
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He spent two years at Columbia University, 
supposedly working with J. F. Ritt but in fact 
working more or less on his own. At the end of 
his NRC fellowship, the job prospects for young 
mathematicians had not improved and showed 
no signs of doing so any time soon. Following 
the advice of B. O. Koopman, who told him 
that his chances of getting a job would be better if he applied for one in statistics, Doob 
accepted a Carnegie Corporation grant that Harold Hotelling could get for him in 
Columbia’s statistics department. Thus it was cold financial necessity that deflected the 
trajectory of Doob’s mathematical career. The following year, he applied for and obtained 
one of the three or four jobs available then in mathematics, a position to teach statistics 
at the University of Illinois.

Until A. N. Kolmogorov provided it with a mathematical foundation in 1933, proba-
bility theory did not exist as a mathematical subject. Dating back to the 18th century, 
many mathematicians, including D. Bernoulli, P.-S. Laplace, P. de Fermat, B. Pascal,  
and C. Huygens had made interesting calculations, but exactly what they were calcu-
lating was not, from a mathematical standpoint, well defined. Similarly, although  
C. F. Gauss himself had studied what he called the “theory of errors” and F. Galton had 
invoked Gauss’s ideas to lend scientific credence to his ideas about eugenics, the rela-
tionship between statistics and mathematics was even less clear. One can only imagine 
the reaction of someone like Doob, who found Birkhoff’s theory of aesthetics wanting in 
mathematical rigor, to these fields.

Faced with the challenge of not only learning statistics but also transforming it into a 
field that met his high standards, Doob set to work. Kolmogorov’s model of probability 
theory is based on Lebesgue’s theory of integration, and Doob was well versed in the 
intricacies of Lebesgue’s theory. One of Doob’s first breakthroughs was a theorem about 
stochastic processes. As long as one is dealing with a countable number of random vari-
ables, most questions that one can ask about them are answerable, at least in theory. 
However, the same is not true of an uncountable number of random variables. Kolm-
ogorov had devised a ubiquitous procedure for constructing uncountable families of 
random variables, but his construction had a serious drawback. Namely, the only ques-
tions about the random variables constructed by Kolmogorov that were measurable 
were questions that could be formulated in terms of a countable subset of the random 
variables. Thus, for example, if one used Kolmogorov’s procedure to construct Brownian 
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motion, then one ended up with a family of random variables that were discontinuous 
with inner measure 1 but continuous with outer measure 1. What Doob showed was 
that there is a canonical way to modify Kolmogorov’s construction so that questions like 
those of continuity became measurable; and, because this modification reduced questions 
about uncountably many random variables to questions about countably many ones, he 
called it the “separable” version. Although Kolmogorov’s construction is no longer the 
method of choice, and therefore Doob’s result is seldom used today, at the time even 
Kolmogorov acknowledged it as a substantive contribution.

Doob’s renown did not rest on his separability theorem. Instead, he was best known for 
his systematic development and application of what he called “martingales”1—a class of 
stochastic processes of either real- or complex-valued random variables parameterized by 
a linearly ordered set, usually either the non-negative integers or real numbers, with the 
property that increments are orthogonal to any measurable function, not just linear ones, 
of the earlier random variables. Thus, partial sums of mutually independent are martin-
gales, but partial sums of trigonometric series are not.

Martingales arise in a remarkable number of contexts, both outside and inside of proba-
bility theory. For example, J. Marcinkiewicz’s generalization of Lebesgue’s differentiation 
theorem can be seen as an early instance of what came to be known as Doob’s martingale 
convergence theorem, even though Marcinkiewicz’s argument was devoid of probability 
reasoning. In a probabilistic setting, martingales had also appeared in the work of  
S. Bernstein, Kolmogorov, and P. Lévy. But it was Doob who first saw just how ubiq-
uitous a concept they are, and it was the ideas he introduced that propelled martingales 
into the prominence they have enjoyed ever since. Of key importance were his conver-
gence and stopping time theorems.

Strictly speaking, the convergence theorem was not an entirely new result, as both  
B. Jessen and Lévy had proved theorems from which it followed rather easily. However, 
Doob’s proof was far more revealing and introduced ideas that were as valuable as the 
result itself. In particular, he introduced the notion of a “stopping time,” a random time 
with the property that one can tell whether it has occurred by any fixed time t if one 
observes the martingale up to time t. Thus, the first time that a martingale exceeds a level 
is a stopping time, but the last time that it does is not a stopping time. Doob’s stopping 
1 The origin of the term “martingale” is somewhat obscure. J. Ville seems to have been the first to use it in a 

mathematical context. Because a martingale can be viewed as a mathematical model of a fair game, some people 
think that the term derives from a betting strategy. But Doob wasn’t convinced, and for a period he expressed 
his skepticism by hanging the equestrian version of a martingale on the wall behind his desk.
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time theorem shows that the martingale property 
is not lost if one stops the martingale at a stopping 
time. His proof of his convergence theorem makes 
ingenious use of that fact.

After proving these theorems, Doob turned his 
attention to applications. What he discovered was 

that martingales provided a bridge between partial differential equations and stochastic 
processes. The archetypal example of such a bridge is the observation that a harmonic 
function evaluated along a Brownian path is a continuous martingale. Once one knows 
this fact, S. Kakutani’s seminal result—the one that relates the capacitory potential of 
a set to the first time that a Brownian motion hits it—becomes an easy application of 
Doob’s stopping time theorem. In addition, the theorem lends itself to vast generaliza-
tions that lead eventually to the conclusion that, in a sense, there is an isomorphism 
between potential theory and the theory of Markov processes. One can easily imagine 
Doob’s joy when he used martingales to prove Fatou’s theorem about the way in which 
analytic functions in the disk approach their boundary values. Having been forced by the 
job market to abandon classical analysis for statistics, his revenge must have been sweet.

Two books that appeared in the early 1950s were responsible for making probability a 
standard part of the American mathematics curriculum. The first was William Feller’s 
Probability Theory and Its Applications, which was a superb treatment that studiously 
avoids Lebesgue integration. Feller’s book set the standard for undergraduate probability 
texts, but it was Doob’s Stochastic Processes that made probability theory respectable in the 
mathematical research community. The style of Doob’s book was very different from that 
of Feller’s. Examples and applications were everywhere dense in Feller’s book, whereas 
Doob’s was a brilliant but daunting compilation of technical facts, unembellished by 
examples. Doob’s goal was to show that probability theory could stand with any other 
branch of mathematical analysis, and he succeeded.

The fact that most young probabilists have never read Doob’s book can be seen as a 
testament to its success. In the years since its publication, it spawned a myriad of books 
and articles that gave friendlier accounts of the same material. Nonetheless, if it were not 
for Doob’s treatment of K. ItÔ’s stochastic integration theory, R. Merton’s interpretation 
of the Black-Scholes model would not have been possible. Of course, whether that is a 
reason for celebrating or condemning Doob’s book is a question whose answer is outside 
the scope of mathematics.
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Typical of Doob’s dry humor and laconic style was a statement contained in his Who’s 
Who entry to the effect that he had made probability more rigorous but less fun. 
Although he was right on both counts, he had no reason to regret what he had done. 
Mathematicians owe him a huge and enduring debt of gratitude.
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