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Eugene Dynkin was a noted mathematician and educator 
who made significant contributions to the fields of algebra 
and probability. His early area of research was algebra, specif-
ically Lie groups and Lie algebras, but later he became inter-
ested in various areas of stochastic processes and their applica-
tions, especially Markov processes. He returned to Lie groups 
at the very end of his career, in 2009. The Dynkin diagram, 
Dynkin systems, and Dynkin’s lemma are all named for him. 
The zero-sum, stochastic stopping Dynkin game model that 
he developed is important in the field of economics.

Eugene Dynkin (a.k.a. Evgeniy Borisovitch to his Rus-
sian students and colleges and Zhenya to his relatives and 
closest friends) was born in Leningrad in the former Soviet 
Union, now St. Petersburg, Russia, on May 11, 1924. That 
was a very turbulent time in the nation’s history. World War 
I (1914–18), the Russian Revolution (1917), and the Civil 
War (1918–22) were in the recent past, and Joseph Stalin’s 
Terror (1930–53) and World War II (1939–45) were straight 
ahead. Zhenya’s father, a lawyer, was born in 1888 in Belarus, 
graduated from a high school in Odessa, and eventually man-
aged to get into the university, not an easy thing for a Jew un-
der Czarist rule. During the Civil War, he worked at the Red 
Army offices but remained a civilian. Afterwards, he worked 
as a legal advisor at various Soviet establishments. Commu-
nists did not trust educated people, however, and in March 
1935 the whole family was exiled to Kazakhstan. At the peak 
of Stalin’s terror, in 1937, Zhenya’s father was arrested and 
disappeared into the Gulag (Stalin’s system of concentration 

camps). Zhenya’s mother graduated from dental school but 
did not practice before her husband’s arrest.

In Kazakhstan, they eventually managed to settle in Ak-
tubinsk, a medium-sized city, and Zhenya was admitted to 
high school (later on, he stated that the school in Aktubinsk 
was the best in his experience). He graduated in 1940, at the 
age of sixteen, with highest possible honors. By that time, he 
had become very interested in mathematics. Despite the fate 
of his father, Zhenya was admitted to Moscow State Uni-
versity (MSU) to the Division of Mechanics and Mathemat-
ics (in the Soviet Union, students had to choose their major 
right away).

On June 22, 1941, German Nazi armies invaded the So-
viet Union. Eugene was only seventeen and thus not eligible 
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for the draft, but as the German forces approached Moscow, 
the university was evacuated. His stories about this time of 
chaos include, in particular, a month-long journey to Perm, 
a city east of Moscow, on trucks and freight trains. There, he 
was admitted to the University of Perm, where several other 
faculty and students from MSU had ended up. Each year, 
Eugene was exempt from the draft by medical commission, 
sometimes because of poor vision and sometimes because of 
consequences of bone tuberculosis, which he had contracted 
as a child. He was able to return to Moscow and to the uni-
versity in 1944 and graduated from MSU in 1946.

At MSU, there were a number of research seminars. Eu-
gene was especially interested in Israel M. Gelfand’s seminar 
devoted to Lie groups and Andrey Kolmogorov’s seminar on 
Markov chains. In Gelfand’s seminar, he was asked to do a 
presentation on the structure of semisimple Lie groups, based 
on papers by Elie Joseph Cartan, Hermann Weyl, and Bartel 
Leendert van der Waerden. While working on that, he in-
vented a new approach to the problem, based on so-called 
simple roots. Because the angle between two simple roots can 
be equal only to π/2, 2π/3, 3π/4, or 5π/6, a system of simple 
roots can be represented by a simple diagram. Later on, this 
approach greatly simplified the classification of Lie groups 
and Lie algebras. His method of visualizing the structure of 
the simple roots is now known as the Dynkin diagram. At 
the same time, in Kolmogorov’s seminar, he solved (jointly 
with Nikolai Dmitriev) a problem devoted to eigenvalues of 
stochastic matrices.

In 1946, Dynkin started his graduate studies, with Kolm-
ogorov as advisor. Though he was indeed interested in proba-
bility, his thesis, defended in 1948, was devoted to Lie groups 
and Lie algebras. When he completed his graduate studies, he 
was hired as an assistant professor at MSU in the Department 
of Probability and Statistics. He taught probability courses 
as well as algebra courses. In 1952, he was awarded a doctor 
of sciences degree (advanced degree beyond the Ph.D.). His 
second thesis was also devoted to Lie groups and Lie algebras. 
After that, he was promoted to full professor.

On a couple of occasions, he had to teach topics courses 
on stochastic processes and became very interested in the 
area. Traditionally, Markov processes were defined as sto-
chastic processes with Markov property, that is, conditional 
independency of the past and future behavior of the process, 
given their present state. For a long time, theory was focused 
on transition functions of Markov processes and related op-
erators in functional spaces and was mostly analytical. Most 
publications were devoted to special classes of Markov pro-
cesses that are related to second-order linear differential equa-
tions. In the late 1940s, Joseph L. Doob published a series of 
papers devoted to the properties of the trajectories of Markov 
processes with discrete state space, so-called Markov chains 

with continuous time. It was quite natural to try to study 
the properties of trajectories of a Markov process in a more 
general situation. In 1952, Dynkin established a sufficient 
criterion for the existence of a continuous version of a Mar-
kov process, as well as a criterion for existence of a right con-
tinuous process with left limits: the so-called Dynkin-Kinney 
continuity condition (a similar result was established inde-
pendently by J. R. Kinney in 1953).

After 1954, Markov processes became Dynkin’s primary 
research area. He organized a seminar on stochastic pro-
cesses that attracted a large number of graduate students and 
eventually became one of the leaders of Moscow probability 
group. He published two monographs1,2 devoted to the the-
ory of Markov processes based on his results as well as on the 
results of other participants in the seminar [see also3,4].

A number of his results had a major impact on the theory 
of Markov processes. Dynkin started with the general con-
cept of a Markov process. For advanced theory of Markov 
processes, it was necessary to be able to start a process at any 
time instant t and from any starting point x. Also, in order 
to be able to work with, say, diffusions in bounded domains, 
processes with random lifetimes were also needed. As a result, 
a Markov process was defined not as a probability measure on 
the space of trajectories, but as a family of measures Pt,x cor-
responding to different starting points. The complete defini-
tion includes random lifetime ζ and σ-algebras F s , t  of events 
that are related to the time interval (s, t).

Dynkin’s next topic was related to the so-called strong 
Markov property. Intuitively, this means that, for certain 
classes of random moments τ, the process ηt = ξτ+t is also a 
Markov process with the same transition function as the orig-
inal process ξt. On a number of occasions, this property was 
used in the past without rigorous justification. It was first 
established by Doob, sometime in 1940s, for Markov chains 
with continuous time. Later, Doob extended this property to 
n-dimensional Brownian motion. Dynkin, jointly with Yush-
kevich, showed that the strong Markov property holds for 
right-continuous Feller processes.

Later, Dynkin becomes interested in the boundary be-
havior of Markov processes and so-called Martin boundaries. 
Originally, Martin boundaries were invented by R. S. Martin 
in the early 1940s; they were related to non-negative har-
monic functions in a domain. If the domain is smooth, such 
functions are in one-to-one correspondence with finite mea-
sures on the boundary of the domain and can be represented 
as Poisson integrals. For a non-smooth domain, a geometric 
boundary must be replaced by a Martin boundary. For Mar-
kov processes in a domain, a class of non-negative (super)har-
monic functions corresponds to a class of so-called excessive 
functions, and the corresponding Martin boundary is related 
to the boundary behavior of Markov processes.
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Early in his research, Dynkin studied a class of Markov 
processes that behave in the same way within a certain do-
main and therefore could be considered as continuations 
of a process after it leaves the domain. Sometime later, he 
focused on the decomposition of excessive functions into 
extreme ones. Following the ideas of Gilbert A. Hunt, he 
published a number of papers on the subject, among them 
one about Markov chains with continuous time and a second 
about general Markov processes. Dynkin was not satisfied 
with the outcome, however, because some of the assump-
tions definitely looked technical. After several attempts to get 
rid of technicalities, Dynkin completely changed his strategy. 
First, he considered inhomogeneous Markov processes and 
inhomogeneous excessive functions and later on obtained 
a homogeneous result as a corollary. Next, he started with 
the decomposition of excessive measures and then reduced a 
decomposition of excessive functions to a decomposition of 
excessive measures for a dual semigroup. To this end, Dynkin 
introduced the concept of a Markov process with a random 
birth and death time, described such processes in terms of 
their transition function and some excessive measure, and 
constructed an entrance space for a Markov process in terms 
of limits of supermartingales with random birth moments. 
It turned out that such an approach did not require almost 
any technical assumptions, even the topological assumptions 
such as right continuity of the process and so on.

Using similar ideas, Dynkin created a concept of regular 
Markov processes. A process is called regular if its transition 
function is right continuous along the trajectories (again, no 
topological assumptions were used). Regular processes are 
strong Markov, and excessive functions are also right con-
tinuous along trajectories. Among other publications, let us 
mention a couple of papers devoted to the optimal stopping 
problem. Dynkin developed a solution to this problem in 
terms of the smallest excessive function, which dominates the 
payoff function. He also considered a game version of this 
problem with two players. Nowadays, models based on Dyn-
kin’s ideas are known as Dynkin games, and they are heavily 
used in economics applications. 

In 1976, Dynkin finally decided to emigrate from the So-
viet Union. He accepted an offer from Cornell University 
and remained there until his retirement in 2011, at the age 
of eighty-six. At the end of 1970s, Dynkin switched to ran-
dom fields and related questions. Some of his publications 
are related to so-called Dirichlet spaces and Dirichlet forms. 
At the beginning, Dirichlet forms and spaces were associated 
with Brownian motion and the Laplace operator; later on, 
these concepts were extended to right-continuous strong 
Markov processes with symmetric transition density. Dynkin 
designed an alternative version of the theory for regular Mar-
kov processes. Another group of Dynkin’s results is related to 

self-intersections of trajectories of a Brownian motion. In the 
late 1980s, Dynkin became interested in so-called branch-
ing measure-valued processes. Intuitively, such processes can 
be viewed as limits of branching particle systems. Namely, 
suppose we have a large number of small Brownian particles, 
each of which has a short life range and produces a random 
number of offspring when it dies. We assume that the mass of 
the particles as well as the lifetime goes to zero, but the total 
mass distribution at the starting points converges to a certain 
limit. Then, under certain assumptions, the mass distribu-
tion of the particles at time t converges to a measure-valued 
stochastic process: super-Brownian motion as conceived by 
Donald A. Dawson and Shinzo Watanabe (originally, it was 
constructed analytically, not as the limit described above).

Dynkin began with the construction of such a pro-
cess. Naturally, the original process could be a general  
right-continuous strong Markov process, the number of off-
spring may have a distribution that depends on the location 
of the particle, and so on. This way, Dynkin arrived at a gen-
eral class of measure-valued processes that could be obtained 
as limits of the branching particle systems described above.5

If the original process is a Brownian motion, then  
the corresponding measure-valued process is called a  
super-Brownian motion. Super-Brownian motion is related 
to a nonlinear equation ∆u = ψ(u) where the nonlinear term 
ψ(u) is related to branching. The family of possible functions 
ψ(u) includes, in particular, the family ψ(u) = uα, 1 < α ≤ 2. 
For instance, a solution to the equation ∆u = uα in a domain 
D with given boundary conditions can be written in terms of 
the corresponding super-Brownian motion.

Dynkin started with a characterization of so-called polar 
sets. For a stochastic process, a set is called polar if the pro-
cess hits it with a probability of zero. For a Brownian mo-
tion, polar sets can also be characterized as sets of certain 
capacity zero, as well as so-called removable singularities for 
the equation ∆u = 0. Dynkin, jointly with Sergei Kuznetsov, 
established a similar result for a super-Brownian motion in a 
smooth domain. This result was also extended to subsets on 
the boundary of the domain (for a Brownian motion, this is 
not a question).

Next, Dynkin switched to characterization of the class 
of all non-negative solutions to the equation ∆u = uα in a 
smooth domain; his results were summarized in two mono-
graphs.6,7 The first result in this direction was obtained by 
Jean-François Le Gall in 1995; he studied non-negative solu-
tions to the equation ∆u = u2 in a planar domain and estab-
lished a one-to-one correspondence between such solutions 
and pairs (ν, Γ), where Γ is a closed subset of the boundary 
where the solution explodes at a certain rate, and ν is a σ-finite 
measure on the rest of the boundary that serves as a boundary 
value for the solution. The tools used by Le Gall (so called 
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Brownian snake) could not be extended to the case α < 2 or 
higher dimensions, however.

Dynkin, in partial collaboration with Kuznetsov, found a 
general answer to the problem. To begin, they introduced a 
concept of moderate and σ-moderate solutions. A solution is 
called moderate if it is dominated by a harmonic function. 
For a moderate solution, its boundary value is a finite measure 
that does not charge polar sets. Next, a solution is σ-moderate 
if it can be represented as a limit of a monotone-increasing 
sequence of moderate solutions. σ-moderate solutions can be 
uniquely characterized by their fine trace: a pair (ν, Γ) where 
the set Γ is closed with respect to certain topology related to 
the process (fine topology), and the σ-finite measure ν on the 
rest of the boundary does not charge polar sets. Moreover, 
corresponding solutions can be expressed in terms of the cor-
responding super-Brownian motion. Finally, Dynkin proved 
that all non-negative solutions are σ-moderate (for α = 2, this 
was first established by Benoit Mselati; Dynkin proved this 
for all 1 < α ≤ 2). Similar analytic results, applicable to α > 
2 as well, were established by Moshe Marcus and Laurent 
Véron a few years later.

In 2000, a large number of Dynkin’s publications, both 
in algebra and in probability, were collected in the volume 
Selected Papers of E. B. Dynkin with Commentary.8 As Dynkin 
said in his foreword,

A few times I was lucky to find a new approach which 
simplified an important theory. One of them is related 
to the celebrated Campbell-Hausdorff theorem claiming 
that the formal series log(exey) can be expressed in terms 
of commutators. In 1947 I found a simple explicit ex-
pression: it is sufficient to replace all multiplications by 
commutators and then to divide each monomial by its 
degree. …

Some of my results demanded rather lengthy compu-
tations but most exciting was to find from time to time 
a simple new connection between apparently unrelated 
phenomena. For instance, the existence of certain kind 
of sufficient statistics for a convex cone C of probability 
measures implies that every element of C can be decom-
posed, in a unique way, into extremal elements.

Other than doing research, Dynkin was very interested 
in mentoring. He started that in 1943 in Perm, where he 
organized a small seminar for a few students from Moscow 
that happened to be in Perm during the war. Back in Mos-
cow, he organized a seminar for high-school students. The 
seminar was devoted to various mathematical problems that 
can be formulated in an elementary way (later, he published 
a book, jointly with Vladimir Uspenskii, based on the topics 
discussed there).9 For many years, he led a research seminar 

at Moscow University; for a large number of mathematicians, 
their first publications were related to this seminar. A number 
of Cornell students got their Ph.D. under his supervision as 
well; however, as a rule, they did not maintain any long-term 
relationship with Dynkin.

In 1963, Dynkin, together with his graduate and under-
graduate students, organized an “Evening Math School,” 
weekly seminars for mathematically gifted high-school stu-
dents. In 1964, he organized a section in a specialized high 
school for mathematically gifted students and taught some 
calculus and linear algebra there (his graduate and post-grad-
uate students did the seminar work). Based on this, he even-
tually published two more books, jointly with Stanislav A. 
Molchanov, Alexander L. Rosental, and Alexei K. Tolpygo.10,11 

Dynkin was honored by many organizations during his 
life. He was awarded the Prize of the Moscow Mathematical 
Society (1951) and the Leroy P. Steele Prize for Total Math-
ematical Work from the American Mathematical Society 
(1993). He was named a Fellow of the Institute of Math-
ematical Statistics (1962), the American Academy of Arts 
and Sciences (1978), and the American Mathematical Soci-
ety (2012), a member of the National Academy of Sciences 
(1985), and an honorary member of the Moscow Mathemat-
ical Society (1995). He was also was awarded honorary de-
grees from the Pierre and Marie Curie University (1997), the 
University of Warwick (2003), and the Independent Moscow 
University (2003). 
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