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GRIFFITH CONRAD EVANS

May 11, 1887-December 8, 1973

BY CHARLES B. MORREY

GRIFFITH CONRAD EVANS was born in Boston, Massachu-
setts on May 11, 1887 and died on December 8, 1973.

He received his A.B. degree in 1907, his M.A. in 1908, and
his Ph.D. in 1910, all from Harvard University. After receiv-
ing his Ph.D., he studied from 1910 through 1912 at the
University of Rome on a Sheldon Traveling Fellowship from
Harvard. He began his teaching career in 1912 as assistant
professor of mathematics at the newly established Rice In-
stitute, now Rice University, in Houston, Texas. He became
professor there in 1916 and remained with the Institute until
1934. While he was at Rice, he was able to attract outstanding
mathematicians, such as Professor Mandelbrojt of the Uni-
versity of Paris, and young mathematicians, such as Tibor
Rado and Carl Menger, to Rice as visiting professors. Long
before Evans left Rice it was internationally known as a center
of mathematical research.

Evans was brought to the University of California at
Berkeley in 1934 as a result of a nationwide search; he ar-
rived with a mandate to build up the Department of Mathe-
matics in the same way that Gilbert Lewis had already built
the chemistry faculty. Evans struggled with himself to effect
the necessary changes with justice. His innate sense of fair-
ness, modesty, and tact, as well as his stature as a scientist,
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brought eminent success. By the time he retired in 1954, he
had had the satisfaction of seeing the department evolve into
one of the country's major centers of mathematical activity.
His retirement did not diminish his interest in science nor
subtract from his pleasure at seeing others achieve goals he
cherished.

A few years before World War II, Professor Evans and
others on the Berkeley campus recognized the importance of
the fields of probability and statistics, and Professor Jerzy
Neyman was brought to that campus by Evans in 1939 to
organize the Statistical Laboratory. A period of rapid growth
followed; by the close of World War II the Laboratory had
transformed Berkeley into one of the three principal centers
of probability and statistics in the country. The size and im-
portance of the Laboratory continued to grow, and a separate
Department of Statistics was established in 1955.

Shortly after coming to Berkeley, Professor Evans inau-
gurated a seminar in mathematical economics, which he gra-
ciously held in his home once a week. This seminar became
internationally known, providing an inspirational educa-
tional activity and establishing a tradition of mathematical
economics on the Berkeley campus that continues to the pres-
ent. The seminar was attended by both students and faculty
and promoted a friendly atmosphere in the department.

FUNCTIONAL ANALYSIS

In the first decade of the century, while Evans was a
student, functional analysis was beginning to attract the inter-
est of the mathematical community. Classical analysis was
concerned with functions of real and complex variables,
while functional analysis was concerned with functionals, that
is, functions of "variables" that may themselves be ordinary
functions or other mathematical entities. For example, if/
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denotes any ordinary function continuous for 0 < x < 1, we
may define a functional F by the equation

F(f) = I' f(x)dx.
Jo

Evans began his career as a research scientist before he
received the Ph.D. degree. He published his first paper in
1909. During the ensuing ten years, he contributed a great
deal to the development of the general field of integral equa-
tions and more general functional equations. His principal
results concerned certain integro-differential equations and
integral equations with singular kernels. His interest in this
field had been greatly stimulated by his contact with Profes-
sor Vito Volterra at the University of Rome. He received
early recognition for this important work in 1916 when he
was invited to deliver the prestigious Colloquium Lectures
before the American Mathematical Society on the subject
"Functionals and their Applications" (see bibliography,
1918).

POTENTIAL THEORY IN TWO DIMENSIONS

In 1920 Professor Evans published the first of his famous
research papers on potential theory. He was among the first
to apply the new general notions of measure and integration
to the study of classical problems. In the course of this re-
search, he introduced many ideas and tools that have proven
to be of the utmost importance in other branches of mathe-
matics, such as the calculus of variations, partial differential
equations, and differential geometry; for example, he used
certain classes of functions that are now known as "Sobolev
spaces."
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Introduction to Potential Theory. The central idea in poten-
tial theory is the notion of the potential of a distribution inR 3.
Given a distribution of mass g, we define its potential U by the
equation

(1) U(M) = [ \MP\-'g(P)dP
J w

(W =R,,M = (x,y,z),P = (£*),£))

whenever this is defined. In case g is Hoelder continuous' for
all P and vanishes outside a compact set, then U is of class C2

and its second derivatives are Hoelder continuous.2 In this
case:

(2) AC/ (M) = Uxx (x,y,z) + Uyy (x,y,z) + Uzz (x,y,z)

= - 4Trg(M), M = (x,y,z).

A solution that satisfies (2) with AC/ (M) = 0 on some domain
is said to be "harmonic" on that domain. Such a function has
derivatives of all orders.

The fundamental problem in potential theory is the
Dirichlet problem. Roughly speaking, this consists in proving
the existence and uniqueness of the function U that satisfies
Laplaces equation on a given domain G, is continuous on G
(the closure of G), and takes on given continuous boundary
values on the boundary dG of G.

Another problem, the Neumann problem, is to show the
existence (and uniqueness except for an arbitrary additive
constant) of a function V that satisfies_Laplaces equation on
G, is continuously differentiable on G, and for which the

1A function g is Hoelder continuous on a set S if, and only if,

\4>(P) -4>(Q)\ <£-|PQ|"

for some constants L and fx, with 0 < fi < 1 and all P and Q are both on S.
2See Oliver Dimon Kellogg, Foundations of Potential Theory (New York: Dover,

1929), p. 38 or 152, for instance: "This could be called a 'classical result.'"
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outer normal derivative dV/dn takes on given continuous
values on dG.

The function u(r,0), defined by3

(3) u{r,d) =
1 f2" d -r2)

— " f(4>)d<t>, r < 1
2TT Jo 1 + r 2 - 2 cos(<l>-ey V

f(6), ifr = 1,

is the solution of the Dirichlet problem in the case where G is
the unit circular disc in R.,. In case

f f
(4) g{$)d<f> = 0 and V(l,d)dd = 0,

the solution of the Neumann problem with boundary values
g (6) on dG proceeds as follows. Let

(5) v(r,d) = - ^ - \ log [I +r> - 2r cos ($ - 6)] g(4>) d4>.
J

It is easy to see that rvr is harmonic on G, and

d - r 2 )
V -TT~^

+r2 -2r cos (</> - d)

1 f2* d-r2)
(6) rvr (r,0) = — V -TT~^ S ̂  d(t>

2TTJ0 1 +r2 2r cos (/ d)

1 f 2"
A7T J o

The first term on the right in (6) is the solution of the Dirich-
let problem with boundary values g(8). If (4) holds, the sec-
ond term is zero and V is one of the desired solutions.

Among Evans' first results were those concerning the
function

3This is Poisson's Integral Formula.
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(7) u (r,6) = ™ [ ( 1 - r 2 ) [1 + r 2 - 2r cos(</> -
o

where F ((/>) is of bounded variation and periodic. Evans
proved the following:

• the functions (r,6) is harmonic inG, the unit disc ini?2;

f 2 * i i
• I \u(r,8) \dd is b o u n d e d for r < 1;

Jo
• u(r,9) = u i(r,0) - u2(r,9) each ut being harmonic and

non-negative on 3G;
• ifP = (l,</>) is a point on 3G, where F ($) is continuous

andf ' (^ ) exists andF'(0) =f ($),then u(r,6) -^f(4>) as
(r,0) —> (1,$) "in the wide sense"; i.e., (r,6) —»• (l,</>)
remaining in any angle with vertex at (1,0).

• If F and i7 ' are continuous, then (7) reduces to the
solution of the Dirichlet problem with continuous
boundary values/(0).

Conversely, if we assume that u = u t — u 2 where each
«, > 0 and is harmonic on G, then u is given by (7).

Early Discussion of the Dirichlet Problem. The first attempt
to solve the Dirichlet problem was made by Green in 1828.4

His method was to show the existence of a Green's function
of the form

G(Q_,P) =- + V(Q,P), r=(P,Q).
r

This function is the Green's function for the regionR and the
pole P. In terms of this Green's function we have

U(P) = - } - \ \ U(Q)^G(Q,P)dS,
4T7 J J dn

s

4See Kellogg, Foundations of Potential Theory, p. 38.
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where 5 is the boundary of R. This development is based,
however, on the existence and differentiability of G(Q,P),
which is obtained using physical considerations and so is not
logically suitable for a mathematical derivation.

In 1913 Lebesgue gave an example of the impossibility of
the solution of the Dirichlet problem.5 The region R can be
obtained by revolving about the x-axis the area bounded by
the curves

y = e ~Ux, y = 0 and x = 1.

This type of region is called a Lebesgue spine. It can be
shown that the region obtained by revolving about thex-axis
the area bounded by the curves

y =xn, y = 0, x = 1, n > 1,

is a regular region; i.e., the Dirichlet problem is always
solvable.

The Logarithmic Potential Function. A similar theory holds
for the two-dimensional situations. One considers the loga-
rithmic potential function in R 2, defined by

(8) U(M) =

/ 1 \1
g(P)dP, M=(x,y), W=R21[

whenever this is defined. Ifg is Hoelder-continuous for allP
and vanishes outside a compact set, then U is of class C 2, and
its second derivatives are Hoelder-continuous everywhere. In
this case,

(9) Af/(M) =Uxx(x,y) +Uuu(x,y) = -2g(M), M ={x,y).

A solution of (9) that satisfies AU (M) = 0 on some domain is

HUd., p. 285, 334.
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said to be harmonic on that domain; such a function has
derivatives of all orders.

The Dirichlet and Neumann Problems in Space. The solution
of the Dirichlet problem in the unit sphere S is given by6

(10) u(M) =

(4TT)-' JJ(1 -r2)(MP)-3/(P)^5, 0 <r < 1,

s
(r = OM), M = (x^,zj

/ (M) ,r = l (S =St, Sr = dB(O,r)).

The solution of the Neumann problem with given values
g (M) of the normal derivative is obtained as in the case of the
unit circle as follows. Let

11) v{M) = -(477T1 jj (MP)-lg(P)dS.

Then it is easy to see that rvr is harmonic and

(12) rvr(M) =^-

s

The first term on the right is just the solution of the Dirich-
let problem with the boundary values g(M). If / / g{M)
dS = 0, then v is a desired function.

Evans and his colleague H. E. Bray proved a necessary
and sufficient condition that a function u, harmonic on the

"This is Poisson's Integral Formula for three dimensions.
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unit ball, be given by the formula

(13) u{M) = (4T7) - ! I I (1 -r*){MP)-3dG{P)

s

for some distribution G(e) on S, is that

\u (M) \dS be bounded for 0 < r < 1,

s

or that u = M , — u 2 where u x and w 2 are non-negative and
harmonic on 6(0,1). If F (e) is a distribution on S, and if
Iim(47rp2)-1-|f [B(P,p)] \ =f(P), thenu(M) -»/(P) asM -»

P in the wide sense (i.e., M remains in a cone with vertex
atP).

The Riesz Theorem. A function V is said to be "super-
harmonic" on a domain ft if, and only if, (i) it is lower semi-
continuous and ? + oo on 11, and (ii) V \M \ > its mean value
over the surface of any sphere with center M that lies with its
interior in ft.

Professor Evans proved that any potential function of a
positive mass is superharmonic on any domain on which it is
defined. Evans also gave the simplest proof of the following
theorem due to F. Riesz:

Suppose u is superharmonic on a domain ft, and D is any
domain, the closure of which is compact and lies in ft. Then

u{M) =U(M) +v(M),Me D,

where U is the potential of a positive mass on D and v is
harmonic onD.7

7 F. Riesz, "Sur des fonctions superharmoniques et leur rappaport a la theorie du
potential," Ada Math, 48 (1926):329-43; 54 (1930):321-60.
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Connection with Sobolev Spaces. In addition, Evans proved
the following important theorems: Suppose U is super-
harmonic on a domain ft. Then U (x,y,z) is absolutely contin-
uous in each variable for almost all pairs of values of the other
two and retains this property under one-to-one changes in
variables of class C'.8

Finally Professor Evans proved the following theorems:
Suppose U is superharmonic on some domain and UP(M)
denotes the average of U over the surface dB(M,p); then
UP(M) is continuously differentiable over any domain Opo

(which consists of all M such thatfi (M,p0) c ft) and Vf/0 ->
Vt/ in L2 on any such domain. A necessary and sufficient
condition for a potential U off(e) to have a finite Dirichlet
integral is that j w U (M) df(e) exist. In this case U must
belong to the Sobolev space H \ on interior domains. Evans
proved many more similar theorems.

A Sequence of Potentials (A Sweeping Out Process). Evans
gave a simple proof that the limit of a non-decreasing
bounded sequence of potential functions of positive mass
each distributed on a fixed bounded closed set F is itself a
potential of positive mass F. The limit of a non-increasing
sequence of such functions, however, is not necessarily super-
harmonic (since the limit of a non-increasing sequence of
lower-semicontinuous functions is not necessarily lower-
semicontinuous).

Nevertheless, Evans showed how to associate a particular
type of positive mass distribution with a particular type of
non-increasing sequence of potential functions on a
bounded, closed setF. To do this, Evans let U u U.,, . . . , be
a non-increasing sequence of potentials of positive mass dis-
tributions / , , f.,, . . . , respectively on F. Let Uo be the limit

8 See bibliography entries of 1935 for the three-dimensional case and those in 1920
for the two-dimensional case.
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function. Clearly U0(M) > 0 but is not necessarily super-
harmonic, although it is harmonic on T where T is the infinite
domain lying in the complement of F, whose boundary tcF.
The/, are uniformly bounded. Hence there is a subsequence
{in} such that {/;„} converges weakly to a positive mass func-
tion/ on F (or a subset of/7). Thus,

lim f (t>(M)df,n(ep)=[ <t>(M)df(ep) (W = 3 space)
"~"x J w J w

for every bounded continuous function 0. Also, / is inde-
pendent of the subsequence. Let U be the potential of/, then

f(e) = 0 for all Borel sets e C T. Thus we may associate the
positive mass function / with the non-increasing sequence
U x, U2, . . . , all the mass having been swept out of T. Since

f(e) = 0 for all e C T, U must satisfy the Laplace's equation
on T.

Professor Evans discovered a great variety of similar
sweeping out processes.9 He applied this type of process to
sweep out a unit mass at a point Q in a domain T containing
Q. This led to a number of interesting results and to a for-
mula for the Green's function for T with pole at Q.

Capacity. The notion of the capacity of a set arises in the
applications and was used by Evans and was developed at
some length in the second part of his paper "Potentials of
Positive Mass."1() Evans also defined the idea of a regular
boundary point. It turns out that a boundary point Q of a
domain 2 is regular if, and only if, a barrier V (M,Q) can be
constructed at Q. Such a function V (M,Q) is continuous and
superharmonic in 2, which approaches £ at Q, and has a
positive lower bound in X outside any sphere with center at

''See Transactions of the American Mathematical Society, 38 (1935):205-13.
'"Ibid., 218-26.
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Q. If every boundary point is regular then the Dirichlet prob-
lem is solvable.

Multiple Valued Harmonic Functions in Space. In 1896"
Sommerfelt developed a method of using multivalued har-
monic functions in three space to solve certain problems in
potential theory, particularly the diffraction problem for a
straight line. In 1900l2 Hobson used a combination of
double-valued harmonic functions to obtain the conductor
potential for a circular disc.

Evans showed that if 5 is a simple closed curve of 0 capacity
(any curve with a continuously turning tangent has capacity
0), there exists a unique surface S bounded by s that has a
minimum capacity among all such surfaces. If the part of S
outside a neighborhood of s is composed of a finite number
of sufficiently smooth pieces and V (M) is the conductor
potential for S, then Evans showed that V must satisfy

<3nf dn~ '

where n f and n ~ are the normals to S at Q. Moreover, if this
holds on a smooth part of S, then S is analytic on that part.
The proof of this involves "double valued" functions, the
tract by Evans, "Lectures on Multiple-Valued Harmonic
Functions in Space" (see bibliography, 1951), presents an ex-
tensive systematic development of a part of the theory of such
functions.

A simple example of a multiple space of a type used by
Evans is the double space H, which consists of all ordered

" Mathematische Theorie der Diffraction, Math Annalen, 47(1896):317-74 and
Uber verzweigte Potential wie Rauma, Proceedings of the London Mathematical Society,
28(1897):395-429.

12 E. W. Hobson, "On Green's Function for a Circular Disc," Cambridge Philosophical
Transactions, 18(1900):277-91.
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pairs (M,m) where m = Oor +1 or - 1 , and

if TO = — 1, then MeR 3 — s; if TO = +1, thenM e / ? 3 - s ;

if TO = 0, thenAf=s, s = {(x,y,z): x2 + y2 = 1, andz = 0}.

Geometrically, we may think of// as consisting of two infinite,
flat, rigid, 3-dimensional sheets of the form Ra — s joined
together along s.

Such a space is a three-dimensional analog of a Riemann
surface in the complex plane, and Evans' result led him into
his extensive research on multiple-valued functions, his prin-
cipal interest during his later years.

Since any multiple space is, by definition, a topological
space, open, closed, and connected subsets of such spaces are
defined and the usual theorems hold. Also harmonic, super-
harmonic, and subharmonic functions can be defined on
domains T C multiple spaces. Much of the existence and
uniqueness theory for harmonic and potential functions is
carried over by Evans to the case of multiple-valued func-
tions, that is, single valued functions defined on multiple
spaces. For example, Evans showed that there is a unique
harmonic function that takes on given continuous boundary
values at all regular points. Moreover the definitions and
theorems about barriers carry over.

But there are many new results for infinite domains (on
multiple spaces). For example, Evans proved that there is a
unique function k(M) bounded and harmonic in Tl U T.z
U . . . U Tn that takes on the values 1 at infinity on the leaf T t

and approaches 0 at infinity on the other leaves. (T, = T D
H i where // , is the z-th leaf of//.) Let T be a bounded domain
C H, a particular space, and \etA be a fixed point in T. Evans
showed that there exists a unique Green's function with pole
at A that has the following properties:

As a function of M:

(i) y(A,M) is harmonic in T except at A.
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(ii) y(A,M) is bounded except in a neighborhood of A
and y(A,M) - 11 AM remains bounded near A

(iii) y (A,M) vanishes at all regular points of the boundary
tofT.

In addition, y (B,A) = y{A,B) for A and .6 where A and B eT.
There is a unique function K(A,T) with the same properties,
with/I andM on A = T ,u . . . U Tn. Also, K(A,M) -> 0 asM
-^ oo on any leaf. Finally Evans proved that there is a unique
surface of minimum capacity that spans a given space curve
s or a set of space curves {s}. It is the locus of the
equation X (M) = 1/2 where// is taken as a two-leaved space
and the st are chosen as branch curves in H.

Finally, a version of Green's theorem holds for domains T
on multiple spaces whose boundary consists of several branch
curves 5,, . . . , sr of zero capacity and several smooth
surfaces.13

MATHEMATICAL ECONOMICS

Evans' work in mathematical economics was that of a pio-
neer. At a time when most economists in this country dis-
dained to consider mathematical treatments of economic
questions, he boldly formulated several mathematical models
of the total economy in terms of a few variables and drew
conclusions about these variables. Some of these expositions
were based on the theories of Cournot (1837) and some are
found in the book Mathematical Introduction to Economics by
Evans.

The simplest theory is the following: It is envisaged that
there is only one commodity being manufactured by one
producer, and one consumer. The cost of manufacturing and
marketing u units of the commodity per unit time is q(u); this

13For a full discussion, see Griffith Conrad Evans, "Multiply Valued Harmonic
Functions. Green's Theorem," Proceedings of the National Academy of Sciences of the
United States of America, 33(1947):270-75.
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is called the cost function. The consumer will buy y units of
the commodity (per unit time) if the price is p per unit; thus
y = <£(/>) is the demand function. The market is in equilib-
rium if y = u, that is, if all the commodity is sold. Clearly the
profit 77 made by the producer is given by

IT = pu - q(u) = p(t>(p) ~ q[(j)(p)l

The producer is a monopolist if he can sell all he produces at
any given price. In this case it would be reasonable to assume
that the producer would set the price to maximize his profits.
This leads to the equation:

£ { p < l > ( p ) q [ < K p ) ] } £ 0.
dp dp

In order to get a solution, we must know the functions
q(u) and (f>(p). The simplified form for^(w) is Au2 + Bu +
C. C represents the overhead and should be > 0. The average
cost per unit is

u
which may reasonably increase ultimately, so that/I > 0. The
"marginal unit cost" is

du

If dqldu is > 0 for u > 0, we must have/? > 0; we may as well
assume B > 0. Clearly <j>(p) is decreasing and positive; the
simplest form for 4>(p) is ap +b where a < Oandb > 0. If the
market is in equilibrium, we have

u —b
y =u =ap +b p — or

u — b
77 —u • Au —Bu —C.
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In order to maximize n, one must have dirldu = 0. This
yields

*L -b--2Au-B=0
a a

b +ba Ba + 2Aab -b
U 2 -2Aa ' ** 2o(l -Aa)

Of course a monopolist may choose u (or p) to satisfy some
other condition.

As a second theory, Evans assumes that there are two
producers manufacturing amounts u i and u 2 of the commod-
ity (per unit time). Let us assume that the producers are
subject to the same cost function q(ut) = Af + BUJ + C and
there is produced only what is sold; that is, the market is in
equilibrium. If we assume the same demand function,

(1) y=u1+u2=ap+b,

then the selling values are pu, and the profits are

TT, =pu( - (Auf +But + C), i = 1,2.

Additional hypotheses are needed to find p and then uh

Suppose each producer tries to determine u; so as to maxi-
mize the total profit, still assuming equilibrium. In this case,
we say that the producers are cooperating. Then the total
profit Tt = TT y + TT2 is

TT=p(ul +u2) -A{u\+ul) -B(u1 +Uz) -2C,

TT = — (tt!+Uj) -A(u*+ul)-B(Ul+u2) -2C
a

using (1) to determine p. Assume u x and u 2 are chosen to
maximize IT. Then we must have



du j du2
or
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-2Au2-B =0,

which determine u x and u 2 uniquely.
As a third theory, let us suppose that a producer is subject

to the same cost and demand functions but has no control
over the price. Then he will choose u to maximize

TT = pu — Au 2 — Bu — C

for the given price; this yields dirldu = p — 2Au - B to
determine

p-B

This theory can be generalized to the case where there are
n producers, each subject to a different cost and demand
function, but who all set the same price p. Then the i-th
producer produces ut units where the total profit is

TT = ^ 7T; = ^ (pU f ~A jU? —B tU i —Ci).

1 = 1 ! = 1

This will be a maximum if

= 0 o r p — 2 A jUj - B , « , - , i — l , . . . , n ,
dii

which yields

_P~B, . _ ,
u , - ^ , i - i, . . . , n .
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Similar problems can be solved in some cases where the u,-
and/; depend on time. Evans solved such a problem in which
there is one producer with

q=Au'z+Bu+C, y=ap+b+hp', A>Q,B>0, C > 0

a < 0,b > 0,h > 0, p' =dp/dt, and A, B, C, a, b, h

are all constants.

The term hp' is suggested by the consideration that the de-
mand is greater when the price is going up than when the
price is going down, other things being equal. This problem
required more sophisticated mathematics. It is still assumed
thatw =y for alii and that the rate of profit is 77 =pu —q(u),
and finally that the profit made during the interval {ta,t^ is

77 = I Tr{p,p')dt
J In

is a maximum over any interval (to,tj). This leads to the
condition that the integral

(2) I {p(ap +b +hp') -A(ap +b +hp')2

J'»
-B(ap +b +hp') - C}dt

is a maximum of any interval, where Tr{p,p') is given by the
integrand in (2). This is a standard problem in the calculus of
variations.14 From that theory we conclude that the Euler
equation

(3) ~(TTP,)=TTP

14See any book on the calculus of variations, for example, G. A. Bliss, Calculus of
Variations (Washington, D.C: Mathematical Association of America, 1925).
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holds. Carrying out the differentiation with respect tot in (3),
we get for Euler's equation

(4)

where

(5) IT ,v,

means

T V

means

37V

d~p~'

d2p
" dt2 "

d2n

etc.

dp
" dt "'

p means
d

dp

27T

'dp'""

TT(p,p') =p(ap +b +hp') -A{ap + b +hp')2 -B(ap +
b +hp') —C and the derivatives in (5) are the indicated partial
derivatives regarding p and p' as independent variables.
Carrying out the differentiations in (5), we get

(6) TTV.V. - -2Ah2, irv,v =h(l - 2aA),

TTP =a(2p -B) +hp'{\ -2aA) +b(l -2aA) -3a2Ap.

Setting dpldt = p' in (4) and using (5) and (6), Euler's equa-
tion becomes

-2Ah2p" + h (1 - 2aA)p' =a(2p - B) +hp'(l - 2aA)

+ b(l - 2aA) - 2a2Ap

< = > -2Ah2p" = 2a(l - aA)p +b{\ - 2aA) - aB

2a (I -oA) b(l -2aA) -aB .
< = >p» = —^ Lp + -1 1 , i.e.,*"

F -2Ah2 F -2Ah2 F

= M2p -N2,

which is reduced to the form
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This is solvable by standard methods in differential equa-
tions.

This is one of the simplest cases. More sophisticated theo-
ries involving such things as taxes, tariffs, rent, rates of
change, transfer of credit, the theory of interest, utility, the-
ories of production, and problems in economic dynamics
were worked out by Evans.

Evans' scientific career resulted in over seventy substantial
published articles, four books, and several classified reports.
It should be added, since it is such a rare occurrence among
mathematicians, that he continued his productive work for
many years after his retirement. He gave a number of invited
addresses in Italy and elsewhere during that period.

Professor Evans was elected to the National Academy of
Sciences in 1933 and became a member of the American
Academy of Arts and Sciences, the American Philosophical
Society, the American Mathematical Society (vice president,
1924-26; president, 1938-40); the Mathematical Association
of America (vice president, 1934), and the American Associa-
tion for the Advancement of Science. He was a fellow of the
Econometric Society.

Evans was invited to give addresses in connection with the
Harvard Tercentenary and the Princeton Bicentennial Cele-
bration. He was also asked to give the Roosevelt Lecture at
Harvard in 1949 and was Faculty Research Lecturer in Berk-
eley in 1950 and was awarded an honorary degree by the
University in 1956. The Griffith C. Evans Hall on the Berke-
ley campus was dedicated in 1971.

During World War I, Evans served as a captain in the
Signal Corps of the U.S. Army. During World War II, he was
a member of the Executive Board of the Applied Mathemat-
ics Panel and was part-time technical consultant, Ordnance,
with the War Department. He received the Distinguished
Assistance Award from the War Department in 1946 and
received a Presidential Certificate of Merit in 1948.
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The charming hospitality of the Evanses is remembered
with pleasure by those fortunate enough to have been guests
at their home. And Evans' own keen, dry sense of humor was
much appreciated by his many friends and associates.

Professor Evans married Isabel Mary John in 1917. They
had three children, Griffith C. Evans, Jr., George William
Evans, and Robert John Evans and many grandchildren.
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