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Walter Feit was born on October 26, 1930, the 81st birthday of Ferdinand G. 
Frobenius, whose work was to have a profound impact on Feit’s own research. He was 
born in Vienna, Austria, to shopkeepers Paul and Esther Feit. Walter’s childhood was a 
tragic time for the people of Europe, especially the Jewish people. At the age of eight in 
August 1939, Walter’s parents sent him on a Kindertransport to London. He never saw 
his parents again.

Shortly after his arrival in London, the evacuation of children from London began, and 
he was eventually moved to Oxford where, in 1943, he won a scholarship to an Oxford 
technical high school. At this time, he became “passionately interested in mathematics.” 
After the war, he joined relatives in Florida and, in 1947, entered the University of 
Chicago, graduating in 1951 with bachelor’s and master’s degrees. Probably during 
this period, Feit came upon a copy of William Burnside’s Theory of Finite Groups in the 
Eckhart Library and studied it, including the famous Note N, in which Burnside conjec-
tures that all non-abelian finite simple groups have order divisible by 2. Feit mentioned 
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that the library copy contained a handwritten marginal comment by Leonard E. 
Dickson, “also by 3.” (Dickson was wrong, as later shown by Michio Suzuki.)

Upon graduation, Feit enrolled at the University of Michigan to study with Richard 
Brauer, who had joined the faculty there in 1948. Brauer was a mathematical grand-
child of Frobenius and the leading expert in group representation theory. In January 
1952, Michio Suzuki came to the United States and spent the summer of 1952 at the 
University of Michigan with Brauer and Feit. This was a momentous confluence of 
minds. In autumn 1952, Brauer moved to Harvard University, and Feit remained at 
Michigan but continued under Brauer’s supervision. One significant portion of Feit’s 
doctoral thesis was a new proof of a celebrated Frobenius theorem using Brauer’s charac-
terization of characters. The theorem asserts that if G is a transitive permutation group 
that is not regular, but in which no non-identity element fixes two points, then G has a 
regular normal subgroup K. Such groups came to be known as Frobenius groups with 
Frobenius kernel K. The other part of Feit’s thesis evolved into a joint paper with Brauer2 
bounding the number of characters in a p-block. The bound is . Their result 
remains the best known, though it exceeds the conjectured upper bound.

Feit accepted an instructorship at Cornell University in Ithaca, New York, in 1953. His 
academic career was interrupted by military service but then resumed at Cornell. He 
married Sidnie Dresher in 1957. They had two children, Paul (b. 1959), a mathematician 
on the faculty of the University of Texas of the Permian Basin, and Alexandra (b. 1961), 
an artist now living in Haines, Alaska. Walter and Paul produced the joint paper “The 
K-Admissibility of SL(2, 5).”

Building on fundamental work of Jordan and Frobenius, Hans Zassenhaus initiated in 
1936 the study of 2-transitive permutation groups with no regular normal subgroup in 
which every non-identity element fixes at most two points. Under additional hypotheses, 
he was able to show that such a group G has a subgroup isomorphic to PSL(2, q) of 
index 1 or 2. Such groups came to be called Zassenhaus groups. The problem of classi-
fying all Zassenhaus groups was pursued in the 1950s by Feit, Suzuki, and Noboru Ito. 
In a Zassenhaus group, a 1-point stabilizer, N, is a Frobenius group, and in his 1958 
dissertation, John G. Thompson proved that a Frobenius kernel is necessarily a nilpotent 
group. In the same year, Feit announced the following result in the article “On Groups 
Which Contain Frobenius Groups as Subgroups:”3
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As noted in G. E. Wall’s review of the theorem, “This in a sense refines the ‘exceptional 
character’ theory of Brauer and Suzuki.” As an application, Feit proved the following 
theorem in “On a Class of Doubly Transitive Permutation Groups,”4 which provided 
proofs for the results in Theorem 1:

Theorem 2. Let G be a Zassenhaus group with M, m and h as in Theorem 1. Then m = pe 
for some prime p, and |M : | < 4h2. Moreover, if  = 1, then G has a subgroup G0 of 
index at most 2 with G0 ≅  PSL(2, pe).

Note that in Theorem 2, M is the Frobenius kernel of the Frobenius group N = NG(M), 
which is the stabilizer of a point in G. Thus, by Thompson’s thesis, M is a nilpotent 
group, i.e., a product of groups of prime power order. Theorem 2 proves that in fact M 
is a p-group for some prime p, as well as bounding |M : |. Shortly thereafter Suzuki 
treated the case when  = 1, thereby completing the classification of Zassenhaus groups 
and discovering in the process an infinite family of simple groups, Sz(q), all of order 
not divisible by 3. Here q = 22n+1, n ≥ 1, m = q2, h = q – 1, and |M : | = q. Suzuki’s 
discovery was a surprise to Feit, who was biased (by Dickson’s marginal comment?) to 
believe that all finite simple groups would have an order divisible by 3.

One main ingredient of Feit’s new contribution to exceptional character theory was 
that it applied to the case of non-abelian Frobenius kernel M. Indeed, in a footnote in 
the 1960 article, Feit commented that Suzuki had informed him that he, Suzuki, and 
Zassenhaus had been able to prove one of Feit’s main permutation group results on G 
when M was abelian.

To briefly explain why the abelian case is easier, note that all the (absolutely) irreducible 
characters ζ of M have the same degree 1 in that case. The difference  of any two of 
them restricts to 0 on the trivial subgroup, and the T. I. property (by a character calcu-
lation, or use of the Mackey decomposition theorem) then implies that the difference 
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ζ→ζ I

induces to a difference of two irreducible characters of G. The Brauer-Suzuki theory4 
then implies that, by making a choice of sign ϵ and a choice of character assignments 
 ζ → χ, ζˊ→ χˊ,..., that ζ − ζˊ induces to ϵ(χ –χˊ), ζˊ − ζˊˊ induces to ϵ(χˊ − χˊˊ),..., 
etc. The ability to make this choice was later to be called “coherence” in a more general 
context (see below). Analogous choices can’t always be made for all the irreducible 
characters of M in the non-abelian case, but Feit was able to prove a somewhat more 
restricted version when M was nilpotent. See Wall’s review of Feit’s 1959 article above, 
as well as the 1960 article and the relevant chapter in Feit’s character theory book.5 The 
last quoted result uses the newer terminology “coherence” in its statement and uses in its 
proof more general and elaborate results from the Odd Order Paper.1 Coherence is simul-
taneously a simple but potentially difficult concept: Following Feit’s ideas in his 1967 
book, one starts with a set of possibly reducible characters of a subgroup N of a finite 
group G, setting I(S) to be the set of all integer linear combinations of elements of S, and 
denoting by I0(S) the members of I(S), which vanish at 1. A linear isometry τ from I0(S) 
to the integral character ring of G is said to be coherent if it can be extended to a linear 
isometry on all of I(S). If τ is understood from context, then S is said to be coherent if τ 
is coherent.

It seems evident, from the linkage of Theorem 2 4 and Feit’s additional analysis in his 1967 
work5 that his Zassenhaus group work helped inspire the coherence notion and its later, 
more difficult application in the Odd Order Paper. The notion itself was not enough, 
however, and more sophistication was needed, beyond constructing candidate isometries 
τ from induction using T.I. sets. Feit writes near the beginning of “Isometries,” the last 
section of Chapter IV of his character theory book: “For some purposes the [T.I. set] 
assumption is too restrictive. In Feit-Thompson1 such a map τ was constructed under 
weaker hypotheses.”5

Feit goes on to describe a simplification and generalization of that work owing to Dade6 
and presents Dade’s method in the rest of the chapter. Further work on coherence was 
later done by Sibley, some of it appearing in “Coherence in Finite Groups Containing a 
Frobenius Section.”7 A full exposition of the character theory needed in the Odd Order 
Paper, including the contributions of Dade and Sibley, was written by Peterfalvi.8 Chapter 
4 of Characters of Finite Groups remains a good introduction, both to the Odd Order paper 
character theory and to the context of Peterfalvi’s much later treatment. Written ostensibly 
for students, it gives much insight into Feit’s thinking and does treat a nontrivial case of the 
Odd Order Paper of historical interest, namely the CN theorem of Feit, Marshall Hall, and 
Thompson,9 inspired by the work of Suzuki, which we now discuss.
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In “The Nonexistence of a Certain Type of Simple Groups of Odd Order,”10 Suzuki 
achieved the first significant result on groups of odd order since the work of William 
Burnside early in the twentieth century. He proved:

CA Theorem. A finite group of odd order must be solvable if the centralizer of every 
non-identity element is abelian.

The structure of the proof is the following: Let G be a minimal counterexample to the 
theorem. Thus, every proper subgroup of G is solvable. Using the centralizer hypothesis, 
Suzuki is able to prove that every maximal subgroup of G is a Frobenius group with 
abelian kernel. Using this, he is able to deduce detailed information about the ordinary 
characters of the group G, and this suffices to yield a contradiction. Recall that 
Thompson proved in his doctoral dissertation that the kernel of every Frobenius group 
is a nilpotent group. Marshall Hall, who had recently taken a faculty position at the 
California Institute of Technology, invited Feit and Thompson to visit with the goal of 
extending Suzuki’s result. Walter and Sidnie’s son Paul had just been born, and so Walter 
was unable to accept the invitation. Hall and Thompson succeeded in improving Suzuki’s 
result to the following:

CN Theorem. A finite group of odd order must be solvable if the centralizer of every 
non-identity element is nilpotent.

The structure of the proof is again: Let G be a minimal counterexample to the theorem. 
The centralizer hypothesis makes it possible to prove that every maximal subgroup is 
a Frobenius group. Using this, it is possible to deduce detailed information about the 
ordinary characters of G and finally to derive a contradiction. Hall and Thompson sent 
a draft of their paper to Walter, who was able to greatly improve the character theo-
retic portion of the argument, even improving on Suzuki’s argument for the CA case. 
This became the Feit-Hall-Thompson CN Group Theorem. The entire proof took only 
sixteen pages and gave Feit and Thompson the courage to attack the general Odd Order 
Problem, believing it might require about 25 pages to complete. They were off by a factor 
of 10.

First, Feit and Thompson tried the special case where all Sylow subgroups of G are 
abelian. They were able to reduce the problem to one specific thorny case. Setting this 
aside, they tackled the entire problem. Fortuitously, Adrian Albert had secured funding 
for a special year in finite group theory to be held at the University of Chicago in 
1960-61. This gave Feit and Thompson the perfect opportunity for intensive collabo-
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ration. Charlie Curtis remembers seeing them covering blackboard after blackboard with 
calculations day and night.

Once again, the structure of the proof is to take a minimal counterexample G, which 
is then a simple group of whose proper subgroups are all solvable. It is still possible to 
severely restrict the structure of every maximal subgroup M of G, but it is not quite 
possible to show that M must be a Frobenius group. So-called groups of Frobenius type 
and 3-step groups must be allowed. This in turn makes the character theoretic analysis 
much more difficult.

Thompson wrote: “I think there are only a few who understood the precision and 
subtlety with which Walter handled a variety of character-theoretic situations. Suzuki 
and, of course, Brauer appreciated Walter’s strength. But only Walter and I knew just 
how intertwined our thinking was over a period of more than a year.”

George Glauberman, who was a student at the time, said that he and his contemporaries 
in group theory thought of Walter as a magician. In a similar vein, when told a decade 
later that Walter said some problem about linear groups was easy, David Wales replied: 
“Everything is easy for Walter Feit.”

Finally, Feit and Thompson succeeded in reducing the entire problem to the same 
thorny case that they had encountered when all Sylow subgroups were assumed abelian. 
In particular, there were a pair p, q of odd primes satisfying a certain number-theoretic 
condition. For a while they asked number theorists if they could prove that there were 
no such primes. This problem remains open, but Thompson was finally able to find an 
intricate generators-and-relations contradiction. (A somewhat easier argument for this 
final step was found later by Thomas Peterfalvi.11) This completed the proof of:

The Odd Order Theorem. Every finite group G of odd order is a solvable group.

The Odd Order Theorem was published in the Pacific Journal of Mathematics in 1963.1 It 
consumed a complete volume of 255 pages. As noted above, Walter and John shared the 
1965 Frank Nelson Cole Prize in Algebra in recognition of this paper.

Before completion of the Odd Order Paper, Feit and Thompson published a short 
paper12 dedicated to Richard Brauer on the occasion of his sixtieth birthday. Brauer 
and his student K. A. Fowler had used the fact that two involutions in a finite group 
G generate a dihedral subgroup of G to prove that if G is a finite simple group of even 
order with an involution centralizer of size c, then |G|< (c2)! Brauer had then used this 
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as motivation to suggest a strategy for classifying finite simple groups of even order. 
(In researching a paper on the Theory of Finite Groups in the twentieth century, Feit 
discovered an 1899 paper of William Burnside that anticipated many of Brauer’s and 
Fowler’s methods, much to Brauer’s surprise.) Thinking of dihedral groups as polyhedral 
groups (2, 2, n), Feit and Thompson suggested that “other polyhedral groups can surely 
play a role in group theory which is not totally eclipsed by the groups (2, 2, n).” To illus-
trate this, they used the group (3, 3, 3) to prove:

Later in the 1960s, Graham Higman took up this theme. He and several of his students 
produced some “odd characterizations” of finite simple groups, usually beginning with 
some hypotheses on the 3-local structure of the group.

In 1959, Jacques Tits introduced the notion of a type of point-line geometry called a 
generalized n-gon for n ≥ 2, which is characterized by the property that the incidence 
graph has diameter n and girth 2n. These are the rank 2 constituents of geometries Tits 
would call “buildings.” They are “thick” geometries whose “thin” skeletons are ordinary 
n-gons. Although finite n-gons exist for all n≥ 2 (with n = 2 a degenerate case), Feit and 
Graham Higman were able to prove in 1964 that finite generalized n-gons only exist 
for n = 3, 4, 6 or 8 (with n = 12 allowed in their more general formulation). Tits refers 
to this result as “the remarkable theorem of W. Feit and G. Higman” in his treatise on 
BN-pairs.13 These pairs are group-theoretic configurations conforming to axioms Tits 
abstracted from groups of Lie type. They are used to construct buildings, with the rank 
of the latter identifying with the rank of the BN pair, both identifying with the rank of 
a Coxeter group W (the pair’s “Weyl group”). The Feit-Higman theorem, while purely 
geometric in statement and proof, has as a consequence that finite BN-pairs of rank 2 
have Weyl groups, which are dihedral of order 2n, with n = 2, 3, 4, 6, or 8. The cited 
Tits volume classifies finite BN-pairs of rank at least 3. Tits gives no such classification 
for rank 2 but does offer suggestions for strengthening the BN-pair and building axioms 
to enable such, in each case introducing more group theory or its equivalent. Some of this 
found its way into the classification of finite split BN-pairs of rank 2 by Fong and Seitz,14, 15 
which also relies heavily on the Feit-Higman theorem.
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The ingredients of the Feit-Higman proof were difficult calculations with finite incidence 
geometries and related matrices, but, beyond that, hard to place. Later, L. Solomon and 
R. Kilmoyer gave a more conceptual proof16 in which the calculations are made from 
the point of view of representations of an algebra with two specified generators. Their 
argument was soon recast by Donald Higman using his newly formulated theory of 
coherent configurations, geometrically defined algebras imitating, without groups, endo-
morphism algebras arising from finite-group permutation modules.17 At the least, this 
gave the proof something of a familiar framework.

It was possibly at this point that the theory of generalized n-gons, already known to 
include finite projective planes as the n = 3 case, became part and parcel of the standard 
landscape of finite geometry. Studies of possible further generalizations of rank 2 
buildings were made by William Kantor after providing an outline and overview of the 
generalized n-gon point of view.18 Once again, the Feit-Higman result was given high 
marks as “the most remarkable and important” result in Kantor’s outline of generalized 
n-gon theory because of the restrictions it placed on n.18 The generality of this result 
has not been matched, though it has not been sufficient in and of itself for a full rank 
2 building theory. The latter was perhaps achieved in 2002, with some concessions 
(additional hypothesis), in the Tits and Weiss volume on Moufang polygons.19 The 
latter theory did, however, allow for infinite point and line sets and was sufficiently 
effective to be the rank 2 basis of a streamlined version of Tits’ earlier work on buildings. 
A rank 1 BN-pair, without additional hypothesis, is just a doubly transitive group, as 
Feit remarked in his review of Fong and Seitz.14,15 Of course, Feit’s work on Zassenhaus 
groups, discussed above, was his principal contribution to the theory of doubly transitive 
groups. He also wrote several other papers related to finite geometry on topics such as 
projective planes, error-correcting codes, and block designs.

In 1964, Feit accepted a faculty position at Yale University, where he remained for the 
rest of his life. He had supervised two Ph.D. students at Cornell University and would 
have 18 Ph.D. students, including the authors of this article, during his almost 40-year 
career at Yale. 

In 1878, Camille Jordan had proved the existence of a function  such that 
every finite subgroup of  contains a normal abelian subgroup A with  
|G/A |≤ J (n). It should be noted that the normal subgroup A is necessary, since the group 
D of diagonal matrices in  contains finite (abelian) subgroups of arbitrarily large 
order. The analogous theorem fails if  is replaced by  for p a prime. For example, for 
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all m≥ 2, SL(2, 2m) is a finite simple subgroup of . In “An Analogue of Jordan’s 
Theorem in Characteristic p” (1966),20 however, Brauer and Feit proved the following 
conjecture of Otto Kegel:

Theorem. Let p be a prime. There is an integer-valued function fp(m, n) such that if K is a 
field of characteristic p and if G is a finite subgroup of GL(n, K) whose Sylow p-subgroups 
have order at most pm, then G has a normal abelian subgroup A with |G/A| < fp(m, n).

In 2011, Michael Larsen and Richard Pink published a remarkable improvement21 of this 
theorem:

Notice that the Brauer-Feit theorem follows easily from this result together with the 
fact that if H is a finite simple group of Lie type in characteristic p, then |H| < (|H|p)3, 
where |H|p is the order of a Sylow p-subgroup of H. The proof of the Larsen-Pink 
Theorem relies on deep results in algebraic geometry and algebraic group theory but only 
elementary results from finite group theory.

Walter remained interested in the classical Jordan result, and in “Finite Linear Groups 
and Theorems of Minkowski and Schur,”22 he proved an improvement of related results 
by Schur and Minkowski concerning finite subgroups of GL(n, Q). Unpublished 
work by Boris Weisfeiler, using the Classification of Finite Simple Groups, gave greatly 
improved versions of Jordan’s function f (n). After Weisfeiler’s tragic disappearance, Feit 
encouraged Michael J. Collins to complete Weisfeiler work, which he did, proving in 
particular in a 2007 paper23 that for n ≥ 71, we may take f (n) = (n + 1)! (Note: Sn+1 is 
always contained in GL(n, C). So, this result is the best possible.)   

Perhaps stimulated by his work with Brauer on Jordan’s Theorem in characteristic p, 
which used Green’s theory of vertices and sources, Walter gave a several semester course 
at Yale in 1967-68 on modular representation theory. His 1969 mimeographed Yale 
lecture notes for this course evolved into a textbook, The Representation Theory of Finite 
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Groups.24 Jon Alperin’s review notes that this book (together with the earlier Yale notes) 
was the first comprehensive treatment of the general theory of modular representations 
of finite groups. Some noteworthy topics that the book treated with great attention 
included the Green correspondence and its application by Thompson25 and Dade26 to 
create the theory of blocks with cyclic defect group. This work extended a 1941 theory 
of Brauer treating blocks with defect 1, i.e., defect group of prime order p. (The defect 
group of a p-block of G is a p-subgroup of G, determined up to G-conjugacy.) Feit’s book 
is widely cited and was translated into Russian in 1990.27

Feit made contributions to modular representation theory before, during, and after his 
book was written. We have already mentioned the Brauer-Feit bound for the number of 
ordinary irreducible characters in a block.2 In the modular case, there is no such bound 
known but a number of conjectures. There are also well-known finiteness conjectures of 
Donovan and Puig that assert or imply the finiteness of the number of possible Morita 
equivalence classes of block algebras for finite groups, given their defect groups. Feit has 
a conjecture, the first version of which he presented at the Santa Cruz Conference on 
Finite Groups in California in 1979.28 It was reformulated by Linckelmann in 2018 and 
called the Feit conjecture.29 This version states that, for a given field k of characteristic 
p and a finite p-group P, there are, up to isomorphism, only a finite number of isomor-
phism classes of finite-dimensional indecomposable kP -modules M with the following 
property: There is a finite group G and an irreducible kG-module that has P as vertex and 
M as source. (These notions are central to the Green correspondence mentioned above.) 
Linckelmann notes that the work of Dade provides a positive answer to this conjecture 
for M of fixed dimension. Dade’s paper30 even hints that there might be a constructive 
approach to determining all such source modules M for irreducible kG-modules, which is 
likely what Feit had in mind.

In 1970, John G. Thompson was awarded the Fields Medal for his extraordinary accom-
plishments in group theory, most notably the Odd Order Paper and the N-Group Papers.  
At that ICM, Walter gave a report entitled “The Current Situation in the Theory of 
Finite Simple Groups.”

Feit had a long interest in finite linear groups G (in characteristic 0) of small degree d, 
either in the absolute sense or in the sense that d is small relative to some prime divisor p 
of |G| , beginning with a joint 1961 paper with Thompson on the case d < (p – 1)/2. A 
sequence of subsequent papers pursued this further for d < p – 1. Finally, in 1974, Feit 
published a paper that both treated a specific but highly interesting d = p + 1 case and 
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brought in integral representations.31 He wrote: “Let G be a finite group. Let K be an 
algebraic number field contained in the field of complex numbers which is closed under 
complex conjugation. Let V be a faithful K [G]-module....The object of this paper is to 
prove some results which assert that under various conditions one can choose a G-in-
variant lattice in V which has special properties. These properties can then be exploited 
to give information about the structure of G.” In particular, using extensive information 
about unimodular rational lattices in dimension at most 24, Feit could prove:

Theorem. Let G be a finite group of order divisible by 23 having a faithful rational represen-
tation of degree 24. Then either G has a subgroup of index 23, 24 or, 25, or .

Here, Co0 is the automorphism group of the 24-dimensional Leech lattice. This theorem 
and a closely related one in the same paper enabled Feit’s student, Dan Fendel,32 to prove 
that the simple subgroup, Co3, of the Conway group, Co0, is the unique simple group 
having an involution centralizer isomorphic to 2.Sp(6, 2), a perfect central extension 
of the symplectic group Sp(6, 2), one of the many essential characterization theorems 
pursuing Brauer’s strategy for the classification of all finite simple groups.

Feit’s conjecture in his contribution to the 1981 Santa Cruz Conference on Finite 
Groups mentioned above was motivated by the approaching completion of the classifi-
cation of finite simple groups and the opportunities to better understand the modular 
representation theory of these groups. He began the program of understanding explicitly 
the Brauer trees of all blocks of finite sporadic simple groups with cyclic defect group,33 a 
program continued and partly completed later by Hiss and Lux.34 Feit also gave general 
descriptions of graphs with more than 248 vertices that could be the Brauer tree for a 
block with cyclic defect group. In further work on sporadic groups, Feit completed a 
program begun by his student Mark Benard to determine all Schur indices for all char-
acters of sporadic groups.35,36,37 More generally, he championed the conjecture that all 
Schur indices for characters of finite simple groups are equal to 1 or 2. Much progress on 
this conjecture was made by Rod Gow, but the conjecture is not yet settled in all cases. 
Feit also made progress, jointly with his student Leonard Chastkovsky, in determining 
some block invariants for low-rank groups of Lie type.38, 39 In particular, they found the 
degrees of projective indecomposable modules, and explicitly determined one of the 
Cartan invariants.

As the proof of the classification theorem neared (or so it seemed) its completion in the 
early 1980s, Thompson turned his attention to the classical problem of determining 
which finite groups could be realized as Galois groups over the rationals, the so-called 
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Inverse Galois Problem. Walter Feit was one of the editors of the volume Proceedings of 
the Rutgers Group Theory Year, 1983-84. Notably, he wrote an introduction to the section 
“Rigidity and Galois Theory”40 in that volume and contributed, individually and with 
collaborators, three other articles to that section. All this came on the heels of a dramatic 
contribution by Thompson. We quote from Walter’s introduction:

The relevant ideas from algebraic geometry had been known for some 

time.41,42,43 However, the full force of these ideas was first exploited 

by Thompson,44 who amongst other things isolated the fundamental 

concept of rigidity and saw it could be used in many explicit cases. As 

a first application he proved the striking result that the Fischer-Griess 

monster M is a Galois group over Q.

Rather than give Thompson’s definition of rigidity, we quote from a MathSciNet review 
(by David Surowski) of a paper by Feit and Fong titled “Rational Rigidity of G2(p) 
for any prime p > 5” and published in the same Proceedings45 that illustrates (a main 
case of ) the rigidity concept and its capability (in the so-called rational rigidity case) of 
proving existence of realizations of a given group as a Galois group of an extension of Q. 
Surowski writes:

Let G = G2(p), where p ≥ 5 is a prime. Let {a, b} be a set of fundamental roots for G with a 
short and b long. Let C1 be the class of involutions of G, let C2 be the class of elements of G 
containing xa(1), and let C3 be the class of elements of G containing xa(1)xb(1). Let

 A = AG(C1, C2, C3) = {(x1, x2, x3) : x1x2x3 = 1, xi ϵ Ci}.

The result proved in the papers under review is that A is rationally rigid. In other words, 
the following three conditions hold:

(1) If xi ϵ Ci and if χ is a complex character of G, then χ (xi) is an integer.

(2) |A| = |G|.

(3) If (x1, x2, x3) ϵ A, then .

Conditions (2) and (3) define the rigidity of the set A of triples, and these conditions are 
already enough (at least for simple groups) to insure G is a Galois group over an abelian 
extension of Q. Condition (1), in the presence of the other two conditions, is a formu-
lation of the rationality property that allows the extension to be taken over Q itself.
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The rational rigidity of G2(5) had been proved by Thompson. Using the classification 
of finite simple groups, Feit and Fong were able to verify Condition (1) for all p > 5. As 
might be expected, the proofs of Feit-Fong are more character theoretical than Thomp-
son’s, not only in checking item (2), but also in eliminating possible overgroups of x1, x2, 
x3 in checking (3) by using, in part, class algebra structure constants. In their 1999 book, 
Malle and Matzat give both Thompson and Feit-Fong independent credit for the case p 
≥ 5 for G2(p) but adapt the Feit-Fong proof for their general approach to treating groups 
G(p) of twisted or untwisted exceptional Lie type. These groups G(p) are treated as an 
interesting “family” much in the same spirit as the “family” of sporadic groups. Naturally 
enough, there were (and are) fewer open cases in the sporadic simple groups family (only 
the Mathieu group M23 remains). Information on known and unknown cases for G(p) is 
available (in all types) in Malle and Matzat’s book.46

When one takes a step away from simple groups, the next groups to handle are their 
automorphism groups and central extensions. For simple groups G (or, more generally, 
groups with trivial center), rigidity methods that exhibit G as a Galois group over Q 
often extend to show Aut(G) is also a Galois group over Q. Malle and Matzat provide a 
discussion and a list in their 1999 monograph.46 Passing to central extensions is another 
story; the rigidity theory of G does not apply so directly to its covering groups as to its 
automorphism groups, and much less is known. For a while, only central extensions 
using central groups of order 2 were studied. Feit initiated the study of 2-fold central 
extensions of the simple alternating groups, showing that 2An had such a realization 
at least for n ≡ 3 (mod 4).47 He used Serre’s 1984 paper,48 which formulated a coho-
mological obstruction theory especially suitable for the 2-fold case, where it could be 
formulated in terms of a quadratic trace form. Returning to rigidity methods, Feit 
introduced some new approaches to realizing central extensions, especially effective 
in the 3-fold cases, in his 1987 article.49 Informally, he cleverly adds an involution to 
the covering group to act on the order 3 center, thus killing it in some sense, without 
actually removing it. Then he applies rigidity methods to the larger group, recovering the 
intended central covering as a normal subgroup of index 2 (in the spirit of Theorem C in 
his 1985 contribution to the Rutgers Group Theory Year Proceedings,40) throwing away 
the added involution. Some of his results are summarized by Malle and Matzat46 in the 
theorem below, attributed to Feit’s results in his 1989 article.49 In their preamble to the 
theorem, they give a more formal summary of the proof idea, stating that it is “to obtain 
central Frattini extensions as subgroups of centerless Frattini extensions.” The termi-
nology G-realization over Q below is technical, referring to a (strong) way a given group 
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can be realized as a Galois group over Q by first being realized through an extension of 
function fields over Q, then applying Hilbert’s Irreducibility Criterion.

Malle and Matzat remark that the groups in part (b) contain, with the exception of J3, all 
sporadic groups whose Schur multipliers have orders divisible by 3. We can add that the 
groups A6, A7 in part (a) are the only simple alternating groups with Schur multipliers 
having this divisibility property. In general, the sporadic groups and the alternating 
groups have cyclic Schur multipliers with orders divisible only by the primes 2 and 3. 
And these multipliers are sometimes trivial in the sporadic group cases, so that the above 
theorem, especially with the earlier work on order 2 coverings, is closer to a picture of 
central extension realizations for these two families (sporadic and alternating) than might 
be guessed at first glance. In the alternating group family, the existence of central 
extension realizations is now known in all cases. This is mostly thanks to later work of 
Mestre that treats 2-fold central extensions of all of the simple alternating groups.50  
There are also two 3-fold central extensions, handled by part (a) of the theorem above, 
and two 6-fold extensions 6A6 and 6A7. Both are treated by Feit in his 1989 article,49 an 
announcement by Mestre on the first page of the latter paper, facilitated through a 
personal communication with Feit.

Walter Feit continued to publish articles on inverse Galois theory for the rest of his 
mathematical career, but the papers discussed briefly above represent some of his most 
significant contributions, selected from eight publications in the period 1985-89 of 
rapid evolution of the subject. In 1990, a conference was held at Oxford University and 
a two-issue volume of the Journal of Algebra was published to honor his sixtieth birthday. 
In addition to many articles on or related to finite group representations and characters 
were many articles on or related to Galois theory. These included Mestre’s article cited 
above, as well as articles individually authored by G. Malle, D. Saltman, J. Sonn, N. 
Villla, and J. Walter. There were also joint articles by B. Fein and M. Schacher, R. Foote, 
and D. Wales, and R. Guralnick and J. Thompson. Many of the Galois theory authors 
had been invited to submit a paper at the suggestion of J.-P. Serre, who had often corre-
sponded with Walter regarding Galois theory.

Q.

Q.
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In addition to Feit’s students, many notable algebraists studied with Walter in a postdoc-
toral or junior faculty capacity, including Don Passman, Bernd Fischer, Larry Dornhoff, 
David Goldschmidt, Richard Lyons, David Sibley, and Dave Benson.

Walter was a charming conversationalist, a lover of good food, and a very knowledgeable 
history buff. In the words of Dan Mostow, “He knew, in detail, the history of every 
country, ancient or modern, as far as I could tell.” In addition to his lifelong friendship 
with John G. Thompson, Walter had many dear friends in the community of algebraists 
of his generation, including J.-P. Serre, Jacques Tits, and Bob Steinberg. He also earned 
the veneration of the group and representation theorists of succeeding generations. The 
great success of a conference held at Yale University in October 2003 to honor his career 
on the occasion of his retirement from the Yale faculty was a testament to this admiration 
and affection. Sadly, cancer would claim Walter’s life just a few months later on July 29, 
2004.

NOTE

The authors thank Andrew Obus and Alexandre Turull for their assistance in navigating 
parts of the literature.
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