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KURT OTTO FRIEDRICHS

September 28, 1901–January 1, 1983

B Y  C A T H L E E N  S Y N G E  M O R A W E T Z

THIS MEMORIAL OF Kurt Otto Friedrichs is given in two
parts. The first is about his life and its relation to his

mathematics. The second part is about his work, which
spanned a very great variety of innovative topics where the
innovator was Friedrichs.

PART I: LIFE

Kurt Otto Friedrichs was born in Kiel, Germany, on Sep-
tember 28, 1901, but moved before his school days to
Düsseldorf. He came from a comfortable background, his
father being a well-known lawyer. Between the views of his
father, logical and, on large things, wise, and the thought-
ful and warm affection of his mother, Friedrichs grew up in
an intellectual atmosphere conducive to the study of math-
ematics and philosophy. Despite being plagued with asthma,
he completed the classical training at the local gymnasium
and went on to his university studies in Düsseldorf. Follow-
ing the common German pattern of those times, he spent
several years at different universities. Most strikingly for a
while he studied the philosophies of Husserl and Heidegger
in Freiburg. He retained a lifelong interest in the subject of
philosophy but eventually decided his real bent was in math-



132 B I O G R A P H I C A L  M E M O I R S

ematics. He chose to complete his studies in Göttingen, the
mecca of mathematics in the 1920s. There he met Richard
Courant, director of the Institute of Mathematics, who ad-
mired enormously his talent but found him somewhat un-
worldly. In fact, Friedrichs’s childhood asthma had prevented
him from participating in the activities where children natu-
rally socialize and he was painfully shy. Courant and Friedrichs
enjoyed a lifelong friendship that included a great deal of
mathematical stimulation, cooperation and interaction, a
lot of practical advice from Courant, and a fair dose from
Friedrichs of his logical approach to life and his special
values. On the basis of my own observations for over twenty-
five years, they dealt with each other’s idiosyncrasies in a
remarkably comfortable way.

Friedrichs stayed in Göttingen for five years. During this
time he completed his first paper clarifying the logical sig-
nificance of Einstein’s general covariance postulate (1927,1)
and then wrote his dissertation on boundary and eigen-
value problems for elastic plates (1927,2). This was followed
by a paper with Hans Lewy (1927,3) on initial value prob-
lems for linear hyperbolic partial differential equations.

Those first three papers demonstrate most of Friedrichs’s
lifetime in mathematics—the first on the fundamental laws
of the nature of matter, the second on applied mathematics
viewed through analysis, and the third on basic theorems of
wave propagation.

The paper on hyperbolic partial differential equations
led naturally to what turned out to be one of the best-
known and most used results of mathematics of the time
(1928,2). In investigating whether difference schemes for a
time-varying partial differential equation like the wave or
heat equation yield a good approximate solution, Courant,
Friedrichs, and Lewy were led to consider the stability of
the difference scheme. In a simple difference scheme every
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partial derivative like ∂f/∂x is replaced by a difference of
the approximating function at two values of x divided by
the difference of “step” in the values of x. The three au-
thors made the remarkable discovery that the steps in time
could not be chosen arbitrarily but had to be smaller than
some constant times the steps in the space variable. For the
wave equation that constant was the reciprocal of the speed
of propagation. For other equations there may be many
such speeds or one may have a different kind of propaga-
tion, but there is always a limitation of space step (∆x) and
time step (∆t). But the basic idea comes from this paper,
and the constants are all known as CFL numbers. There is
scarcely a talk or a paper on modeling phenomena gov-
erned by so-called explicit difference schemes where this
number does not come up.

Friedrichs was interested, however, in proving existence
theorems for partial differential equations by letting the
mesh size and time step become vanishing small. The mod-
eling aspect was a side product that only became important
after World War II when one could compute something
useful on a large computer. In later life, when Friedrichs
was pressed to say something about the important role of
computer modeling in applied mathematics to which he
had made such a fundamental contribution, he simply would
not bite.

After Friedrichs completed his dissertation and two years
of an assistantship, according to Constance Reid’s fascinat-
ing obituary1 for the Intelligencer, Courant advised his shy
young friend that in the severe competition for positions at
German universities Friedrichs would need some special
advantage and therefore he should become an applied math-
ematician. Thus, Friedrichs followed Theodore v. Karman
to Aachen where v. Karman had become the first professor
of aeronautical engineering. That was an exciting time in
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aerodynamics in Germany. First, it was a new and eminently
practical subject, not like the exotic theories of quantum
mechanics and relativity. Second, the interdiction of the
building of airplanes in Germany in accordance with the
Versailles treaty made the understanding of aerodynamics
from a theoretical point of view a matter of vital concern to
the nation. Friedrichs returned to Göttingen two years later
with a deep knowledge of aerodynamics, which was to serve
him later in America.

But his mathematical interest had shifted to the modern
theory of operators in Hilbert spaces. He even rewrote a
paper (1934) couched in classical language so that it was in
von Neumann’s “new” abstract language. He solved several
problems in spectral theory and used the new method to
solve the initial value problem for hyperbolic equations with
only energy integrals. This led some years later to the idea
of weak solutions, a concept that is the backbone of the
modern theory of linear and some nonlinear equations.

In 1931 Friedrichs was called to Braunschweig to the
Technische Hochschule as a full professor, a rare recogni-
tion in prewar Germany for a man of thirty. But the Hitler
era was about to begin. After five years of increasing politi-
cal difficulties at Braunschweig, a visit to Courant who had
emigrated to New York, and most important, after meeting
Nellie Bruell, his future wife, Friedrichs saw clearly that he
too would have to emigrate, which he did in 1937.

Once again under Courant’s influence, Friedrichs started
dancing on what he liked to call his “other foot”—namely,
doing applied mathematics. On the whole, until the end of
the Second World War his main contributions were in fluid
dynamics with Courant and in elasticity with J. J. Stoker.

When I first met him in 1946, Friedrichs was celebrating
the end of the years of war effort in applied mathematics
by teaching an innovative course in topology. But he and
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Courant were also finishing their basic and still used book
on compressible fluid dynamics (1948,1). I was selected to
edit it mainly for English and thus I came to know Friedrichs’s
meticulous, very careful, and correct, but at times slightly
pedantic, approach to the subject. Since English was after
all my native language, I had some trouble with Friedrichs’s
desire to find a rule (mostly from Fowler’s) to follow. His
English was remarkable, but he never quite became idiom-
atic. Courant enlivened the text considerably, sometimes to
Friedrichs’s disappointment at the expense of correctness.

By 1951 his spectral theory work, which he had renewed
after 1945, led him into his fundamental work in the quan-
tum theory of fields. He published five monographs, which
inspired a number of today’s mathematical physicists, espe-
cially in the circle of Olga Ladyzhenskaya and Ludwig Fadeev
in Russia. All the time as the spirit moved him he would do
a basic piece for applied mathematics or a big chunk of
writing for the famous Courant-Hilbert2 volume 2, completed
in German in 1937 but essentially rewritten in English by
many of the faculty of the burgeoning institute that was to
become the Courant Institute in the early sixties.

By the 1940s, Friedrichs was recognized as one of the
new leaders in American mathematics. He was elected to
the National Academy of Sciences in 1959. He received many
awards and honorary degrees culminating in the National
Medal of Science in 1976, which he received “for bringing
the powers of modern mathematics to bear on problems in
physics, fluid dynamics and elasticity.”

Despite all the recognition, Friedrichs’s modesty could
be overwhelming. When we discussed what should be re-
published in his Selecta, he kept reiterating about each of
his discoveries that someone else had done it better later
and why should someone want to read his less effective



136 B I O G R A P H I C A L  M E M O I R S

original presentation. I succeeded in most cases in overrul-
ing him.

He was never shy mathematically and was, by the 1950s,
much less shy socially. He had a great impact on what
Courant’s fledgling institute became and thereby he greatly
influenced applied mathematics in America both directly
and indirectly.

I must mention one other important influence. While
afternoon teas as a fundamental ingredient of the intellec-
tual life of a mathematician had been conceived at the In-
stitute for Advanced Study in Princeton, Friedrichs carried
the idea to the surroundings of NYU with his imposing
principles. When the secretaries balked at washing the dishes
after colloquia and Anneli Lax and I refused to take over,
Friedrichs persuaded Courant to hire someone to make tea
and coffee and wash up every day of the week. Today the
notion that this custom is conducive to producing math-
ematics has been taken over almost everywhere.

He was a prodigious worker. Nellie shielded him from
unnecessary dealings with the outside world, even to pro-
viding breakfast on a tray for his most productive early morn-
ing labors. But his five children, Walter, Liska, David, Chris-
topher, and Martin, were a source of enormous interest
and pleasure, and he meticulously guarded the time he
spent with them from being interrupted by some math-
ematical spasm.

When he died at the age of eighty-one, one of Friedrichs’s
wishes was that his last works that dealt with the true way to
regard the uncertainty principle and other quantum me-
chanical concepts should be properly understood and seen
correctly from a philosophical point of view.

PART II: WORK

If Friedrichs’s contributions to analysis and applied math-
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ematics had a central theme, it was partial differential equa-
tions (p.d.e.), and it is appropriate to start there. We shall
concentrate on three fundamental subjects covered in three
long papers dealing with regularity of solutions for elliptic
systems (1953), existence and uniqueness for symmetric hy-
perbolic systems (1954), and symmetric positive systems
(1958). All of these papers might be considered natural
applications of the watershed result (1944), where the weak
extension of a system of first-order differential operators
with C1 coefficients is shown to be the same as the strong
extension. Mollifiers, of which hints were given earlier, emerge
as the main tool, as they are in the theory of distributions.

The first major outcome was the regularity for elliptic
systems using mollifiers as a tool. These regularity results
are now standard theory. To mollify a not-so-smooth func-
tion you convolute it with a very smooth one concentrated
in a neighborhood of a point. The convolution is close to
the identity operator. Then one presses out the desired esti-
mates by letting the neighborhood shrink. By this device
Friedrichs avoided using the Lebesgue theory, where, as he
liked to put it, you have to write almost everywhere, almost
everywhere.

The second major outcome was for symmetric hyperbolic
systems. Friedrichs’s interest in this problem goes back much
further, to his work with H. Lewy and to the paper de-
scribed in Part I with Courant and Lewy. The basic idea of
the work with Lewy (1932) was to base not only uniqueness
but also existence of solutions to the wave equation on
energy estimates for the solution and its higher derivations.
This idea was taken up subsequently by Schauder, Petrovsky,
and Sobolev. The two authors would have gone further, via
difference equations, but were stumped by the need to prove
that the expansion around the origin in three-space of
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has positive coefficients. An elegant proof was supplied by
G. Szego, but the new paper had become so involved and
technical that the effort was set aside. By the time Friedrichs
returned to the linear problem in his paper “Symmetric
Hyperbolic Differential Equations” (1954), he was able to
devise a more direct difference scheme with positive coeffi-
cients. The problem has a long history at various levels of
generality going back to Hadamard. It was of deep physical
importance since almost all the key hyperbolic systems, those
of electromagnetic theory, compressible flow, and magneto
fluid dynamics can be reduced, as Friedrichs showed for
the last two, to the symmetric case.

The key ingredients Friedrichs used are energy estimates,
the projection theorem in Hilbert space, and mollifiers.
Finite difference methods are used to establish differentia-
bility. The result is the existence and uniqueness for all
time of a solution to mixed initial boundary value prob-
lems for very wide classes of initial data and boundary con-
ditions.

The third major result is on “Symmetric Positive Linear
Differential Equations” (1958). The type of equation given
in the title is special and is defined as follows. A first-order
linear operator

K
x

= +∑α ∂
∂

γρ
ρ ,

αρ and γ square matrix valued functions, is called symmetric
positive if K + K* is formally positive, where K* is the formal
adjoint of L:
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Along with the operator K go special boundary conditions
of positive type.

A remarkably wide variety of classical and nonclassical
ones, such as various boundary value problems for a cer-
tain class of elliptic systems, the Cauchy problem for a cer-
tain class of hyperbolic equations, mixed initial boundary
value problems for hyperbolic equations, and, last but not
least, certain boundary value problems for equations of mixed
type, such as Tricomi’s equation, are symmetric positive.
Friedrichs’s main motivation was to treat systematically equa-
tions of mixed type and, as he often said, to establish a
method of proof that was “deaf,” as he put it, to changes of
type and would at the same time yield the number and
kinds of boundary conditions necessary for well-posed prob-
lems. He succeeded in “deaf” proofs only in some isolated
cases but instead introduced a fundamental new approach
to weak existence.

Pseudo-differential operators came into being near the
end of Friedrichs’s career. He grasped their importance
immediately, especially for symmetrizing recalcitrant differ-
ential operators. He made many useful technical innova-
tions, and he invented the name for the subject.

Two of the big applications of partial differential equa-
tions are in fluid dynamics and elasticity. Aside from the
“bible” of shock wave theory written with Courant, Friedrichs
made many contributions to fluid dynamics, several of them
unpublished results from wartime work of the forties. These
include work on flow through nozzles, over surfaces of revo-
lution, in detonations, and deflagrations. From a mathemati-
cal point of view, his most important contribution to elas-
ticity was in simplifying and clarifying the very long proof
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of Korn’s inequality (1947). This has been recently reduced
to two pages3 by Olga Oleinik. Friedrichs showed how to
solve the natural boundary value problems of elasticity. His
work with J. J. Stoker (1941, 1942) on buckling problems
broke new ground in a nonlinear problem that was of great
importance to engineers. The methods were basically as-
ymptotic boundary layer methods adapted from Prandtl’s
fluid boundary layer theory. An important key was match-
ing two asymptotic expansions, a so-called inner and an
outer expansion. This technique, which Friedrichs used rig-
orously, also entered the folklore of applied mathematics,
often less rigorously. Friedrichs loved this work, particularly
because it was the basis of a long-lasting cooperation with
his friend Stoker.

Friedrichs’s years in Göttingen coincided with the rising
interest among mathematicians, notably Hilbert and von
Neumann, to put the rapidly developing new physics on a
logical basis. In his basic book on quantum mechanics von
Neumann had identified the states of a quantum mechani-
cal system with unit vectors in a Hilbert space and observables
as self-adjoint operators. A self-adjoint operator, according
to von Neumann and Marshall Stone, is an operator L de-
fined on a domain D(L), whose adjoint has the same do-
main as L and coincides with L there. To apply this defini-
tion, one needs an exact description of the domain of L. In
practice this is a painfully pedantic process, straining the
abilities of mathematicians and never accepted by physi-
cists. Friedrichs was able to eliminate the need for such
pedantry. He showed that if an operator is bounded from
below—and almost all Schrödinger operators are so
bounded—one can start with a crude skeleton of the opera-
tor, defined on a much smaller set, and then reconstruct
the true operator from the skeleton by a process known
ever since as the Friedrichs extension. Such important cases
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as the harmonic oscillator, the hydrogen atom, and the bo-
son quantum field could be treated immediately. Other cases
have followed.

In 1938 Friedrichs investigated in several crucial examples
what happens under perturbation to the spectrum of an
operator that has continuous or mixed continuous and dis-
crete spectrum. This work was prompted by the work for
discrete spectra of F. Rellich4 but was applicable to quan-
tum mechanical scattering. When Heisenberg and Møller
introduced the scattering matrix and wave operators, re-
spectively, in the forties, Friedrichs had already developed
the tools for a time-independent approach in his early work.
This work is described in English with some additions in
“On the Perturbations of Continuous Space” (1948,1).

Friedrichs went on to write a series of books in quantum
physics. In the first he gave precise definitions to many of
the basic but somewhat confused notions of quantum field
theories. Many mathematical physicists have used these books
as starting points for their quantum field work. One of
Friedrichs’s last contributions to quantum mechanics was
his paper “Unobserved Observables and Unobserved Cau-
sality” (1981). This paper is a contribution to one of the
great controversies of twentieth-century physics, the debate
between Niels Bohr and Albert Einstein over the complete-
ness of quantum mechanics. Einstein felt that the laws of
nature should be deterministic or causal, and for this rea-
son he felt the quantum mechanical notion of the state of a
particle was incomplete. Friedrichs introduced the “intrin-
sic state” of a particle and argued that for this intrinsic
state causality is valid but, in accordance with quantum theory,
not verifiable. It is yet to be seen whether this truly recon-
ciles the two sides of the controversy.

There are still many other areas where Friedrichs made
fundamental and deep contributions. The most notable of
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these was asymptotic theory, which grew out of his nonlin-
ear elasticity work. In 1954 Friedrichs gave his Gibbs lec-
ture, a semipopular expository talk in applied areas, at the
American Mathematical Society on this subject. There he
surveyed the role of discontinuities in many physical phe-
nomena, pointing out how important they are to us as ob-
servers (see 1954 paper). Shock waves, boundary layers,
shadows, edge effects, and Stokes phenomena in ordinary
differential equations are all examples. They all come about
because of a singular limiting process where some param-
eter that could be viscosity, frequency, the reciprocal of
Hooke’s constant, etc., goes to zero. Every one of these
phenomena is, however, slightly different, and Friedrichs
helped clarify and rigorize the process for many of them.
Friedrichs ended the Gibbs lecture by showing how
asymptotics enter the adiabatic theorem of quantum me-
chanics. It is another mark of his modesty that there is only
one reference to himself in the bibliography, although he
had made so many vital contributions to the subject.

Taken altogether, as one looks at Friedrichs’s very exten-
sive list of publications, one cannot help but be struck by
the variety of ways and the number of times Friedrichs broke
new ground and then, with the passage of only a few years,
how many of his ideas were absorbed into modern analysis
and applied mathematics and became standard, so that it is
almost forgotten today that they were Friedrichs’s.

As I write this, the spirit of Friedrichs hangs over me
fussing over the details that are not quite right and remind-
ing me that I have left out this and I should have put in
that, but I remind him that it was he who said, “Open your
own newly published work on any random page and you
will find a mistake.” For those who would like to read his
works in detail, I refer to the Selecta published by Birkhauser
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(1986) from which I have drawn heavily, in particular from
David Isaccson’s article about his role in physics.
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