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BY STEPHEN C. KLEENE!

wo PAPERS (1930a, 1931a), both written before the au-

thor reached the age of twenty-five, established Kurt Go-
del as second to none among logicians of the modern era,
beginning with Frege (1879).> A third fundamental contri-
bution followed a little later (1938a, 1938b, 1939a, 1939b).

ORIGINS AND EDUCATION, 1906-1930

Godel was born at Briinn in the Austro-Hungarian prov-
ince of Moravia. After World War I, Briinn became Brno in
Czechoslovakia. Godel’s father Rudolf was managing director
and partial owner of one of the leading textile firms in
Brinn; his family had come from Vienna. His mother Mar-
ianne had a broad literary education. Her father, Gustav
Handschuh, had come from the Rhineland. Godel’s family
cultivated its German national heritage.

After completing secondary school at Brno, in 1924 Go-
del went to Vienna to study physics at the university. The
elegant lectures of P. Furtwingler (a pupil of Hilbert and
cousin of the famous conductor) fed his interest in mathe-

'For some details of Gédels life, I have drawn upon Kreisel (1980) and Wang
(1978, 1981); the authors kindly supplied me with copies.

2 A date shown in parentheses refers to a work listed in the References (or for
Godel, in the Bibliography), under the name of the adjacent author.
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matics, which became his major area of study in 1926. His
principal teacher was the analyst Hans Hahn, who was ac-
tively interested in the foundations of mathematics. Hahn
was a member of the Vienna Circle (Wiener Kreis), the band
of positivist philosophers led by M. Schlick, who was assassi-
nated during a lecture in 1936. Goédel attended many of their
meetings, without subscribing to all of their doctrines (see
Wang 1981, 653). His doctoral dissertation was completed in
the autumn of 1929, and he received the Ph.D. on February
6, 1930. A somewhat revised version was presented at Karl
Menger’s colloquium on May 14, 1930, and was published
(1930a) using “several valuable suggestions” of Professor
Hahn “regarding the formulation for the publication” (Wang
1981, 654; 1930b is an abstract).

GODEL’S COMPLETENESS THEOREM (1930a)

Since Frege, the traditional subject-predicate analysis of
the structure of sentences has been replaced by the more
flexible use of propositional functions, or, more briefly, pred:-
cates.® Using a given collection—or domain D—of objects (we
call them individuals if they are the primary objects not being
analyzed) as the range of the independent variables, a one-
place predicate P or P(a) over D (also called a property of mem-
bers of D) is a function that, for each member of D as value
of the variable a, takes as its value a proposition P(a). A two-
place predicate Q or Q(a,b) (also called a binary relation be-
tween members of D), for each pair of values of ¢ and b from
D, takes as value a proposition Q(a,b); and so on. In the most
commonly cultivated version of logic (the classical logic), the

*1 am endeavoring to give enough background material to enable a scientist who
is not a professional mathematician and not already acquainted with mathematical
logic to understand Godel’s best-known contributions. The memoir (1980) by Krei-
sel, about three times the length of the present one, includes many interesting details
addressed to mathematicians, if not just to mathematical logicians. The memoir
(1978) by Quine gives an excellent overview in just under four pages.
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propositions taken as values of the predicates are each either
true or false.

The restricted or first-order predicate calculus (“elementary
logic”) deals with expressions, called formulas, constructed, in
accordance with stated syntactical rules, from: variables a, b,
G, ..., X, Y, z for individuals; symbols P, Q, R, S, ... for predi-
cates; the propositional connectives — (“not”), & (“and”), V
(“or”) and — (“implies”); and the quantifiers Vx (“for all x”)
and 3x (“[there] exists [an] x [such that]”). For example,
taking P, Q, R to be symbols for predicates of one, two, and
three variables, respectively, the expressions P(b), Q(a,c),
R(b,a,a), VxP(x), Vx3dyQ(x,y), Vx((—P(x)) — Q(a,x)), and
Vx((3yQ(y,x)) = —R(x,a,x)) are formulas.

In the classical logic, after making any choice of a non-
empty domain D as the range of the variables, each formula
can be evaluated as either true or false for each assignment in
D of a predicate over D as the value or interpretation of each
of its predicate symbols, and of a member of D as the value
of each of its “free” variables. Its free variables are the ones
with “free” occurrences, where they are not operated upon
by quantifiers. In the seven examples of formulas given
above, the eight occurrences of a, b, and c are free; the fifteen
occurrences of x and y are not free, that is, they are bound.
The evaluation process is straightforward, taking V to be the
inclusive “or” (A V B is true when one or both of A and
B are true, and false otherwise), and handling A — B like
(—A) V B. For example, taking D to be the non-negative in-
tegers or natural numbers {0, 1, 2, ...}, and assigning to P(a),
Q(a,b) and R(a,b,c) the predicates “a is even”, “a is less than
b” and “ab = ¢”, and to a, b, and ¢ the numbers 0, 1, and 1,
as values, our seven examples of formulas are respectively
false, true, true, false, true, true, and true.

Logic is concerned with exploring what formulas express
logical truths, that is, are “true in general”. Leibnitz spoke of
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truth in all possible worlds. We call a formula valid in D
(a given non-empty domain) if it is true for every assignment
in D; and simply valid if it is valid in every non-empty do-
main D.

To make reasoning with the predicate calculus practical,
paralleling the way we actually think, we cannot stop to think
through the evaluation process in all non-empty domains for
all assignments each time we want to assure ourselves that a
formula is logically true (valid). Instead we use the “axio-
matic-deductive method”, whereby certain formulas become
“provable”.

First, certain formulas are recognized as being logical ax-
ioms. For example, all formulas of either of the following two
torms—the forms being called axiom schemata—are axioms:

A— (B— A). VxA(x) = A(a).

Here A, B, and A(x) can be any formulas, and x and a any
variables; A(a) is the result of substituting the variable a for
the free occurrences of the variable x in the formula A(x).
Furthermore, it is required that the resulting occurrences of
a in A(a) be free; thus Vx3bQ(b,x) — 3bQ(b,a) is an axiom
by the schema VxA(x) — A(a), but ¥x3aQ(a,x) — JaQ(a,a)
is not. The axiom schemata (and particular axioms, if we have
some not given by schemata) are chosen so that each axiom
is valid.

Second, circumstances are recognized, called rules of infer-
ence, in which, from the one or two formulas shown above
the line called premises, the formula shown below the line
called the conclusion can be inferred; for example:

A, A—B C— Ax)
B. C — IxAx).

Here A, B, and A(x) can be any formulas, x any variable, and
C any formula not containing a free occurrence of x. The
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rules of inference are chosen so that, whenever for a given
non-empty domain D and assignment in D the premises are
true, then for the same D and assignment the conclusion is
true. Hence, if the premises are valid, the conclusion is valid.

A proof is a finite list of formulas, each one in turn being
either an axiom or the conclusion of an inference from one
or two formulas earlier in the list as the premise(s). A proof is
a proof of its last formula, which is said to be provable.

In one of the standard treatments of the classical first-
order predicate calculus (Kleene 1952, 82), twelve axiom
schemata and three rules of inference are used.*

By what we have just said about how the axiom schemata
(or particular axioms) are chosen (so each axiom is valid),
and likewise the rules of inference (so truth is carried for-
ward by each inference), every provable formula s valid. Thus
the axiomatic-deductive treatment of the predicate calculus
is correct.

But is it complete? That is: Is every valid formula provable?

The axiomatic-deductive treatment of the first-order
predicate calculus, separated out from more complicated log-
ical systems, was perhaps first formulated explicitly in Hilbert
and Ackermann’s book (1928). The completeness problem
was first stated there (p. 68): “Whether the system of axioms
[and rules of inference] is complete, so that actually all the
logical formulas which are correct for each domain of indi-
viduals can be derived from them, is still an unsolved ques-
tion.”

It is this question that Godel answered in (1930a). He es-
tablished: For each formula A of the first-order predicate calculus,
either A is provable in it, or A is not valid in the domain {0, 1, 2,
...} of the natural numbers (and therefore is not valid).

So, if A s valid, then Godel’s second alternative is excluded,

*1 am giving the version of the predicate calculus with predicate symbols instead
of predicate variables, after von Neumann (1927). This I consider easier to explain.
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and A is provable. This answers Hilbert and Ackermann’s
question affirmatively.

Let us say that a formula A is (or several formulas are
simultaneously) satisfiable in a given domain D if A is satisfied
(all the formulas are satisfied), that is, made true, by some
assignment in D. Then A-is-satisfiable-in-D is equivalent to
— A-is-not-valid-in-D.

Now if A is satisfiable in some domain D, then — A 1s not valid
in that domain D, so —A is not valid, so —A is not provable
(by the correctness of the predicate calculus), so by Godel’s
result applied to —A, —A i1s not valid in {0, 1, 2, ...}, so A is
satisfrable in {0, 1, 2, ...}. This is a theorem of Léwenheim
(1915).

Restating the completeness theorem for —A: Either —A
is not valid (that is, A s satisfiable) in {0, 1, 2, ...}, or —A
is provable (equivalently, a contradiction can be deduced
from A).

Godel also treated the case for an infinite collection of
formulas {A,, A,, A,, ...} in place of one formula. The result
is just what comes from substituting {A, A, A,, ...} for A in
the immediately preceding statement, and noting that, if a
contradiction can be deduced from the formulas A, A,, A,,
..., only a finite number of them can participate in a given
deduction of the contradiction. Thus: Euther the formulas A,
A\, A, ... are simultaneously satisfiable in {0, 1, 2, ...}, or, for some
finate subset {A, , ..., A, } of them, —(A, & ... & A, ) is provable
(and hence valid, so A, , ..., A, are not simultaneously satis-
fiable in any domain).

Now, if the formulas of each finite subset of {A, A, A,, ...} are
simultaneously satisfiable in a respective domain, then the second
alternative just above is excluded, so all the formulas are simul-
taneously satisfiable (this result is called “compactness”), indeed
in the domain {0, 1, 2, ...} (the Lowenheim-Skolem theorem).
Skolem in (1920), in addition to closing up a gap in Léwen-
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heim’s (1915) reasoning, added the case of infinitely many
formulas.

These satishability results, which are coupled with the
completeness theorem in Godel’s treatment, have surprising
consequences in certain cases when we aim to use a collection
of formulas as axioms to characterize a mathematical system
of objects. In doing so, the formulas are not to be logical
axioms, but rather mathematical axioms intended to be true,
for a given domain D and assignment of predicates over D to
the predicate symbols, exactly when D and the predicates
have the structure we want the system to have. To make the
evaluation process apply as intended, I shall suppose the ax-
1oms to be closed, that is, to have no free variables.

In using the symbolism of the predicate calculus to for-
mulate mathematical axioms, we usually want to employ a
predicate symbol E(a,b) intended to express a =5, and usually
written a=b. Then, for our evaluation process we are only
interested in assignments that give E(a,b) the value a=b, that
is, that make E(a,b) true exactly when a and b have the same
member of D as value. Adding some appropriate axioms to
the predicate calculus for this case (Kleene 1952, top 399),
we get the first-order predicate calculus with equality. Godel of-
fered supplementary reasoning that adapted his treatment
for the predicate calculus to the predicate calculus with
equality, with “the domain {0, I, 2, ...}” being replaced in his
conclusions by “{0, 1, 2, ...} or a non-empty finite domain”.

Cantor in (1874) established that the set of all the subsets
of the natural numbers {0, 1, 2, ...} (or the set of the sets of
natural numbers) i1s more numerous, or has a greater cardinal
number, than the set of the natural numbers. To explain this,
I review some notions of Cantor’s theory of sets. He wrote
(1895, 481): “By a ‘set’ we understand any collection M of
definite well-distinguished objects m of our perception or our
thought (which are called the ‘elements’ [or ‘members’] of M)
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into a whole.” A set N is a subset of a set M if each member of
N is a member of M. For example, the set {0, 1, 2} with the
three members shown has the following 8 (= 2%) subsets: {0,
1, 2}, {1, 2}, {0, 2}, {0, 1}, {0}, {1}, {2}, { }. Cantor showed that
there is no way of pairing all the sets of natural numbers (that
is, all the subsets of the natural numbers) with the natural
numbers, so that one subset is paired with 0, another with 1,
still another with 2, and so on, with every natural number
used exactly once. Sets have the same cardinal number if they
can be thus paired with each other, or putinto a “one-to-one
correspondence”. Denoting the cardinal number of the nat-
ural numbers by X, and adopting 2% as a notation for the
cardinal of the sets of natural numbers, thus 2% # X But
the natural numbers can be paired with a subset of the sets
of natural numbers (indeed with the unit sets {0}, {1}, {2}, ...
having one member each), so we write 2% > X .

Sets that are either finite or have the cardinal X, are called
countable; other sets, uncountable. The real numbers (corre-
sponding to the points on a line) have the same cardinal 2%
as the sets of natural numbers.

I have been tacitly assuming for the first-order predicate
calculus (without or with equality) that only a countable col-
lection of variables and of predicate symbols is allowed. This
entails that only a countable collection of formulas exists.

Now suppose that we want to write a list of formulas A,
., A,or A, A, A,, ... in the first-order predicate calculus
with equality to serve as axioms characterizing the sets in
some version of Cantor’s theory of sets. Presuming that the
axioms are satisfied simultaneously in some domain D (the
“sets” in that version of Cantor’s set theory) by some assign-
ment (the one understood in his theory), it follows by the
Lowenheim-Skolem theorem that they are also satisfiable in
the countable domain {0, 1, 2, ...}! (It is evident that they are
not satisfiable in a finite domain.) That is, one can so interpret
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the axioms that the range of the variables in them constitutes
a countable collection, contradicting the theorem of Cantor
by which the subsets of {0, 1, 2, ...} (which are among the sets
for his theory) constitute an uncountable collection. This is
Skolem’s paradox (1923). It is not a direct contradiction; it
only shows that we have failed by our axioms to characterize
the system of all the sets for Cantor’s theory, as we wished
to do.

Suppose instead that we want a list of formulas A, A}, A,,
... in the first-order predicate calculus with equality to serve
as axioms characterizing the system of the natural numbers
0,1, 2, ... . Skolem in (1933, 1934) showed that we cannot
succeed in this wish. He constructed so-called “non-standard
models of arithmetic”, mathematical systems satisfying all the
axioms A, A, A,, ... (or indeed all the formulas that are true
in the arithmetic of the natural numbers) but with a different
structure (as the mathematicians say, not isomorphic to the nat-
ural numbers). In fact, as seems to have been noticed first by
Henkin in (1947), the existence of non-standard models of
arithmetic 1s an immediate consequence of the compactness
part of Godel’s completeness theorem for the predicate cal-
culus with equality.

Before giving Henkin’s argument, I observe that we may
enlarge the class of formulas for the first-order predicate
calculus with equality by allowing individual symbols 1, j, k, ...,
which for any assignment in a domain D are given members
of D as their values, and function symbols £, g, h, ..., where, for
example, if f is a symbol for a two-place function, its inter-
pretation in any assignment is as a function of two variables
ranging over D and taking values in D. Examples that come
to mind for systems of axioms for the natural numbers are 0
as an individual symbol (with the number 0 as its standard
interpretation), " as a one-place function symbol (to be mnter-
preted by +1), and + and X as two-place function symbols
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(for addition and multiplication). Such additions to the sym-
bolism are not essential. We could equivalently use predicate
symbols Z(a), S(a,b), A(a,b,c), and M(a,b,c), where Z(a) is
taken as true exactly when the value « of a is 0; S(a,b) when
a+1 = b; A(a,b,c) when a+b = ¢; and M(a,b,c) when ab =
¢. Here “equivalently” means that whatever can be expressed
using the individual and function symbols can be para-
phrased using the predicate symbols (but at a considerable
loss of convenience). This is shown in Hilbert and Bernays
(1934, 460 ff.) and Kleene (1952, §74).

Now take the proposed list of axioms A, A}, A,, ..., which
are true under the interpretation by the system of the natural
numbers. I shall assume they include (or if necessary add to
them) the axioms Vx(x'#0) and VxVy(x'=y" — x=y). Now
consider instead the list A, —i=0, A, —1=0", A,, —1=0",

.. where 1 is a new individual symbol. Each finite subset of
these formulas is true under the intended interpretation of
the old symbols and interpreting i by a natural number n for
which —1=0" (with n accents on the 0) is not in the subset.
So by compactness, A,, —1=0, A, —i=0", A,, —i=0", ... are
simultaneously satisfiable. It is easy to see that the satisfying
system is isomorphic to one in which 0, 1, 2, ... are the values
of 0, 0', 0", ... and the value of 1 is not a natural number—a
non-standard model of arithmetic.

These illustrations will suggest the power of Godel’s com-
pleteness theorem (1930a) with its corollaries as a tool in
studying the possibilities for axiomatically founding various
mathematical theories.

Actually, not only was the Léwenheim-Skolem theorem
around earlier than 1930, but it has been noticed in retro-
spect that the completeness of the first-order predicate cal-
culus can be derived as an easy consequence of Skolem
(1923). Nevertheless, the possibility was overlooked by Sko-
lem himself; indeed the completeness problem was first for-
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mulated in Hilbert-Ackermann (1928). Skolem worked with
logic intuitively rather than using an explicitly described set
of axioms and rules of inference. Godel’s treatment of the
problem in (1930a) was done without knowledge of Skolem
(1922), which Hilbert and Ackermann do not mention, and
was incisive, obtained the compactness, and included the sup-
plementary argument to make it apply to the predicate cal-
culus with equality.

VIENNA, WITH VISITS TO PRINCETON (IAS)
1930-1939

Godel’s father died in 1929, and Godel’s mother moved
to Vienna. She took a large flat and shared it with her two
sons, until she returned to her beautiful villa in Brno in 1937.
Rudolf, the elder son, was already a successful radiologist in
Vienna. The theater in Vienna appealed to her literary in-
terests, and the sons went with her.

Godel began in 1930 to work on the consistency problem
of Hilbert’s formalist school, which I will describe in the next
section. His approach to this (as described in Wang (1981,
§2)) led him to some results on undecidable propositions
(preliminary to 1931a), which he announced at a meeting in
September 1930 at Konigsberg (1930c). von Neumann was
much interested and had some penetrating discussions with
Godel, both at the meeting and by correspondence. In No-
vember 1930, Godel's famous paper (1931a) was completed
and sent to the Monatshefte (received November 17, 1930). It
was accepted by Hahn as Godel's Habilitationsschrift on Janu-
ary 12, 1932. (1930d) and (1930e) are abstracts of it and
(1931d) is relevant to it.

From 1931 through 1933 Godel attended Hahn’s seminar
on set theory (Hahn died in 1934), and took part in Karl
Menger’s colloquium, which yielded proceedings that re-
ported a number of Godel’s results. In 1933 he was appointed
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a Privatdozent (an unpaid lecturer) at Vienna. In the academic
year 1933-34, he went to Princeton as a visitor at the Insti-
tute for Advanced Study, and lectured on his (1931a) results;
Rosser and I took the notes (1934).

He again visited the IAS in the fall of 1935. While he was
there (according to Kleene (1978) and Wang (1981, Footnote
7)), he told von Neumann of his plan for proving the relative
consistency of the axiom of choice and the continuum hy-
pothesis by use of his concept of “constructible sets”. He com-
pleted his plan three years later (1938a, 1938b, 1939a,
1939b), as will be discussed in the second section below.

On September 20, 1938, he married Adele Porkert. (She
survived him by three years, passing away on February 4,
1981.) He returned to the IAS in Princeton in the fall of
1938. In the spring of 1939 he lectured at Notre Dame, and
he returned to Vienna in the fall of 1939.

Godel's mother, almost alone among her friends and
neighbors, had been skeptical of the successes of Germany
under Hitler. In March 1938, when Austria became a part of
Germany and the title of Privatdozent was abolished, Godel
was not made a Dozent neuer Ordnung, (paid) lecturer of the
new order, as were most of the university lecturers who had
held the title of Privatdozent. He was thought to be Jewish,
and once for this reason he was attacked in the street by some
rowdies. Concerning his application of 25 September 1939
tor a Dozentur neuer Ordnung, the Dozentenbundsfithrer wrote
on 30 September 1939 (without supporting or rejecting the
application) that Godel was not known ever to have uttered
a single word in favor of or against the National Socialist
movement, although he himself moved in Jewish-liberal
circles, though with mitigating circumstances. (The applica-
tion was actually accepted on 28 June 1940, when Godel was
no longer available.) Gédel was bitterly frustrated. He was
apprehensive that he might be conscripted into the German
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army, despite his frail health, which he believed rendered
him unfit for military service. So at the end of 1939, he re-
turned to Princeton, crossing the U.S.S.R. on the Trans-
Siberian Railway.

As a sequel, his mother stayed at her villa in Brno. She
was openly critical of the National Socialist regime (thereby
losing most of her former friends), so she did not expect
reprisals by the Czechs. She returned to Vienna in 1944. But
after the war, under the treaty between the Austrian govern-
ment and Czechoslovakia, she received for her villa only a
tenth of its assessed value.

GODEL’S INCOMPLETENESS THEOREMS (1931a), ETGC.

Cantor’s development of set theory, begun in (1874), had
led—beginning in 1895—to the discovery of paradoxes in it
by himself, Cesari Burali-Forti, Bertrand Russell, and Jules
Richard. For a quick illustration, I state the Russell paradox
(for the others, and references, see Kleene (1952, §11)). Rus-
sell considered the set T of all those sets that are not members
of themselves, which seemed to come under Cantor’s defini-
tion of ‘set’, quoted above. Is T a member of 77 In symbols,
does T & T? Suppose T ¢ T; then by the definition of 7, not
T & T (in symbols T ¢ T), contradicting the supposition. So by
reductio ad absurdum, T ¢ 7. Similarly, supposing T ¢ T,
TeT. Thusboth T¢ T and T e T!

The appearance of the paradoxes gave special impetus to
thinking about the foundations of mathematics, beyond what
was already called for by the very extensive reformulations
of various branches of mathematics in the nineteenth cen-
tury. By the mid-1920s, three principal schools of thought
had evolved.

The logicistic school was represented by Bertrand Russell
and Alfred North Whitehead. It proposed to make mathe-
matics a branch of logic, in accordance with Leibnitz’s 1666
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conception of logic as a science containing the ideas and prin-
ciples underlying all other sciences. They proposed to de-
duce the body of mathematics from logic, continuing from
work of Frege, Dedekind, and Peano (see Kleene 1952, 43—
46). To avoid the newly discovered paradoxes, Russell for-
mulated his theory of types (1908), in which the individuals
(or primary objects not being subjected to analysis) are as-
signed to the lowest type 0, the properties of individuals (or
one-place predicates over type 0) to type 1, the properties of
type-1 objects to type 2, and so on. A rather definite structure
was assumed for the totality of the possible definitions of
objects of a given type. The deduction on this basis of a very
large portion of the existing mathematics was carried out in
the monumental Principia Mathematica (PM) of Whitehead
and Russell in three volumes (1910, 1912, 1913).

Neither of the other two schools, the intuitionistic and the
formalistic, agreed 1o start back in logic to deduce the simplest
parts of mathematics, such as the elementary theory of the
natural numbers 0, 1, 2, ... . Indeed, it can be argued that
mathematical conceptions on this level are already presup-
posed in the formulation of logic with the theory of types.

The intuitionistic school of thought dates from a paper of
Brouwer (1908) criticizing the prevailing or “classical” logic
and mathematics. Brouwer argued that classical logic and
mathematics go beyond intuition in treating infinite collec-
tions as actually existing. As an example, each of the natural
numbers 0, 1, 2, ... is a finite object; but there is no last one.
Mathematicians can often establish that a property is pos-
sessed by every natural number n by reasoning that involves
working with only the natural numbers out to a certain point
depending on n (maybe just with the numbers = n). Thus
the infinity is only a potential infinity (an horizon within which
we work). On the other hand, much of the existing classical
mathematics deals with infinite collections as completed or
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actual infinities. Some reasoning with the natural numbers
uses an actual infinite; for example, the application of the law
of the excluded middle to say that either some natural num-
ber has a certain property P, or that is not the case (so every
natural number has the property not-P). The use of infinite
collections as actual infinities is pervasive in the usual theory
of the real numbers, represented say using infinite decimals.
Brouwer, in papers beginning in 1918 (exposition in Heyting
1971), proposed to see how far mathematics could be rede-
veloped using only methods that he considered intuition as
justifying: that is, methods using only potential infinities, not
actual ones. Brouwer was able to go rather far in this direc-
tion, at the cost of altering the subject substantially from the
classical form as typified by the classical analysis that physi-
cists are accustomed to applying.

The formalistic school was initiated by Hilbert in (1904),
and he developed it with a number of collaborators after
1920. Hilbert agreed with the intuitionists that much of clas-
sical mathematics goes beyond intuitive evidence. He drew a
distinction between real statements in mathematics, which
have an intuitive meaning, and ideal statements, which do not
but in classical mathematics are adjoined to the real ones to
make mathematical theories simpler and more comprehen-
sive. His real statements are those that correspond to the use
of infinity only potentially, while an actual infinite is involved
in the ideal statements. But rather than simply abandoning
the ideal parts of mathematics, Hilbert had another proposal.

We saw above how the first-order predicate calculus, after
logical propositions are expressed as formulas in a precisely
regulated symbolic language, was organized by the axio-
matic-deductive method. Whitehead and Russell, and Hil-
bert, proposed to do the same for mathematics generally, that
is for very substantial portions of mathematics short of the
paradoxes. As we saw, Whitehead and Russell proposed to
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make all of it logic, but not just first-order logic, within which
mathematics is to be defined. Instead, Hilbert proposed to
start with mathematical axioms as well as logical axioms. This
can be done in the symbolism of the first-order predicate
calculus, or using a second-order predicate calculus (with
quantification of properties of individuals), or still higher-
order predicate calculi. In proofs in a system obtained by
adding mathematical axioms to the logical apparatus of the
first-order predicate calculus (or, as we may call them, “de-
ductions” by logic from the mathematical axioms), we are
exploring formulas that are true for each domain D and as-
signment in D that satisfy the axioms. A symbolic language
is first established with an exactly specified syntax (thus, a
class of formulas), and then an exactly defined concept of
proofs (by starting with axioms, logical or mathematical, and
applying rules of inference). We call the result a formal system.
(The first-order predicate calculus as described above is a
tormal system with only logical axioms.)

For Whitehead and Russell, our confidence in the result—
the deduction of mathematics within PM—was to rest on our
being convinced of the correctness of the logical principles
embodied in their version of logic, inclusive of the theory of
types, from which all the rest is deduced.

Hilbert proposed to “formalize” one or another mathe-
matical theory, and he hoped to continue with the whole body
of mathematics up to some point short of encountering the
paradoxes, in formal systems. Typically, the mathematics for-
malized will in part be ideal and thus not supported by our
intuitions. Then he wanted to look at such a system from
outside. The formal system, looking just at its structure
(apart from the meanings or supposed meanings expressed
by the symbols, which guide the practicing mathematician) is
a system of finite objects: symbols (from an at most countably
infinite collection), finite sequences of symbols (like those
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constituting formulas), and finite sequences of finite se-
quences of symbols (like those constituting proofs). So there
is the possibility of applying to the study of a formal system
intuitive methods of reasoning in the real part of mathemat-
ics (using only potential infinities), which Hilbert called fini-
tary (German finit).

In particular, Hilbert hoped by finitary reasoning to prove
the consistency of each of his formal systems, that is, that no
two proofs in it can end in a pair of contradictory formulas
A and —A. This would show that mathematics, as it has been
developed classically by adjoining the ideal statements to the
real ones, is not getting into trouble. Thus Hilbert proposed
to give a kind of justification to the cultivation of those parts
of classical mathematics that the intuitionists reject. The
mathematical discipline in which formal systems (often em-
bodying ideal mathematics) are studied from outside in re-
spect to their structure (leaving out of account the meanings
of the symbols) as part of real mathematics, using only fini-
tary methods, Hilbert called proof theory or metamathematics.
Full-length expositions are in Hilbert and Bernays (1934,
1939) and Kleene (1952).

Now we are in a position to understand Godel’s (1931a)
results.

Clearly, having embodied some part of mathematics in
a formal system, a question of completeness arises just as
we saw for the formal system of the first-order predicate cal-
culus.

Specifically, Godel considered formal systems like that of
Principia Mathematica and systems constructed by the formal-
ists that aim to formalize at least as much of mathematics as
the elementary theory of the natural numbers. (A formal
system that didn’t do this much would be of rather little in-
terest for the programs of the logicistic and formalistic
schools.)
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In such a system, propositions of elementary number
theory can be expressed by closed formulas, that is, ones con-
taining no free variables. Completeness should then mean
that, for each closed formula A, either A itself or its negation,
—A, 1s provable. That is, for the system to be complete,
proofs in the system should provide the answer “yes” (A is
provable) or “no” (—A is provable) to any question about
natural numbers “Is the proposition P true?” such that P can
be expressed, under the intended meaning of the symbols,
by a closed formula A. For example, with the variables in-
terpreted to range over the natural numbers, if A(x,y) is a
formula (with only the free variables x and y) expressing
x <y, one of the two closed formulas Vx3yA(x,y) and
—Vx3yA(x,y) should be true—indeed the first is—and this
one should be provable if the formal system is complete. The
open formulas IxA(x,y) and —3IxA(x,y), in ordinary us-
age, are synonymous with their closures VydxA(x,y) and
Vy—3xA(x,y), and neither is true.

Godel’s first incompleteness theorem of (1931a)-—tamous
simply as “Godel’s theorem”—says that a formal system S like
that described, if correct, is incomplete. There is in S a closed
formula G such that, if in' S only true formulas are provable, then
neither G nor —G is provable in S (although indeed under the
intended interpretation G is true).

To be more specific about the assumption of correctness,
let us take into account the form of G, which is VxA(x), where
for the interpretation the intended range of the variable x is
the natural numbers. Here A(x) is a formula with the follow-
ing property. Let us substitute in A(x) for the free occur-
rences of the variable x successively the expressions (called
numerals) 0,0',0", ..., x, ... which express the natural numbers
0,1,2, ..., x, .... I am denoting the numeral for x by “x”, and
I write the result of the substitution as “A(x)”. For each «x,
one of A(x) and —A(x) is provable. The assumption of cor-
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rectness that Goédel made is that for no formula A(x) and
natural-number variable x are there proofs in S of all of A(0),
A(l), A(2), ..., A(x), ... and also of —VxA(x). This assumption
he called w-consistency. (Simple) consistency is the property that
for no formula A are there proofs of both of A and —A. By
applying w-consistency to VxA, where x is a variable not oc-
curring free in A, w-consistency implies simple consistency.
Restating Godels theorem with this terminology: If S is
w-consistent, it is (simply) incomplete, that is, there is a closed formula
G such that neither G nor —G is provable in S (but G s true).
How could this be? The fundamental fact is that in work-
ing with a formal system (apart from its interpretation), the
objects we are dealing with (the symbols from a finite or
countably infinite collection, the finite sequences of (occur-
rences) of those symbols, and the finite sequences of such
finite sequences) form a countably infinite collection of lin-
guistic objects. By pairing them one-to-one with the natural
numbers, or using some other method of associating distinct
natural numbers with them (as indeed Godel did), each ob-
ject of the formal system is represented by a number, now
called its Gadel number. So indeed, since the formal system §
is adequate for a certain part of the elementary theory of the
natural numbers, we can express in S propositions that by
the Godel numbers actually say things about the system §
itself. Now Godel ingeniously constructed his G to be of the
form VxA(x), where A(x) expresses “x is not the Godel num-
ber of a proof of the formula with a certain fixed Gédel num-
ber p” and p is the Godel number of the formula G itself!
Thus G says, “Every x is not the Godel number of a proof of
me”, or simply “I am unprovable.” So, if G were provable, G
would be false. So (assuming correctness), G is unprovable;
hence (by what G says) G is true; and hence (assuming cor-
rectness) —G is also unprovable. It is easy to confirm that w-
consistency suffices as the correctness assumption in conclud-
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ing that —G is unprovable, and simple consistency in con-
cluding that G is unprovable.

Godel’s formula G, which says “I am unprovable”, is an
adaptation of the ancient paradox of the liar. The Cretan Epi-
menides (sixth century B.c.) is reported to have said “Cretans
are always liars.” If this were the only thing Epimenides said,
could it be true? Or false? To take the version of Eubulides
(fourth century B.c.), suppose a person says “The statement
I am now making is false.” If this statement is false, by what
it says it would be true; and vice versa. Godel’s substitution
of “unprovable” for “false” escapes the paradox, because a
statement and its negation can both be unprovable (while
they cannot both be false).

In two respects, Godel’s theorem, as given in (1931a), has
been improved. Rosser (1936), by using a slightly more com-
plicated formula than Godel’s G, replaced Godel’s hypothesis
of w-consistency by the hypothesis of simple consistency. The
other improvement, to be explained next, is connected with
a development that took place essentially independently of
Godel’s (1931a) and is equally significant.

At least since Euclid in the fourth century B.c., mathe-
maticians have recognized that for some functions and pred-
icates they have “algorithms”. An algorithm is a procedure
described in advance such that, whenever a value is chosen
for the variable or a respective value for each of the variables
of the function (or predicate), the procedure will apply and
enable one in finitely many steps to find the corresponding
value of the function (or to decide the truth or falsity of the
corresponding value of the predicate).

In the 1930s, the general concept of an “algorithm” came
under scrutiny, and Church in (1936) proposed his famous
thesis (“Church’s thesis” or “the Church-Turing thesis”). This
states that all the functions of natural number variables for
which there are “algorithms”, or which in Church’s phrase-
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ology are “effectively calculable”, belong to a certain class of
such functions for which two equivalent exact descriptions
had been formulated during 1932-34. Turing in (1937), in-
dependently of Church, arrived at the same conclusion,
using a third equivalent formulation, namely the functions
computable by an idealized computing machine (error-free
and with no bound on the quantity of its storage or “mem-
ory”) of a certain kind, now called a “Turing machine.” The
thesis applies to predicates, because a predicate can be rep-
resented by the function taking 0 as its value when the value
of the predicate is true and 1 when it is false.

As Turing wrote (1937, 230): “conclusions are reached
which are superficially similar to those of Godel [in (1931a)].”
Godel (193 1a) showed the existence in certain formal systems
S of “formally undecidable propositions”, that is, proposi-
tions for which the system § does not decide the truth or
falsity by producing a proof of A or of —A, where A is the
formula expressing the proposition in the symbolism of §.
Church (1936) and Turing (1937) showed the existence of
“intuitively undecidable predicates”, that is, predicates for
which there is no “decision procedure” or “effective process”
or “algorithm” by which, for each choice of a value of its
variable, we can decide whether the resulting proposition is
true or false.

In (1936, 1943, 1952), I established a connection between
the two developments. The fundamental purpose of using
formal systems (as a reinement of the axiomatic-deductive
method that has come down to us from Pythagoras and Eu-
clid in the sixth and fourth centuries B.c.) is to remove all
uncertainty about what propositions hold in a given mathe- -
matical theory. For a formal system to serve this purpose,
there must be an algorithm by which we can recognize when
we have before us a proof in the system. Furthermore, for
the system to serve as a formalization of a given theory, we
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must have, for the propositions we are interested in, an al-
gorithm to identify the formulas in the system that express
those propositions. Of course, we can start with the formulas
of the system, if they have an understood interpretation, and
take as our class of propositions those expressed by the for-
mulas. For the formalization of the theory of the natural
numbers, using Godel numberings of the formulas and
proofs, the algorithms can be for number-theoretic functions
and predicates, so the Church-Turing thesis can be applied.

Godel established his theorem for “Principia Mathematica
and related systems”. In my generalized versions of the
theorem, I left out all the finer details of the formalization,
and simply assumed that the purpose of formalization as de-
scribed above is served, for the theory of the natural num-
bers. Moreover, I chose in advance a fixed number-theoretic
predicate P(a) so that every correct formal system fails to
formalize its theory completely. Godel’s undecidable propo-
sitions in various formal systems are then all values of this
one predicate. Thus: There is a predicate P(a) of elementary num-
ber theory with the following property. Suppose that in a formal system
S (i) there are formulas A fora = 0, 1, 2, ... given by an algorithm
(which formulas we take to express the propositions P(a) for
a=0,1,2,..) such that, for eacha = 0, 1, 2, ..., A s provable
in S only if P(a) is true, and (11) there i1s an algorithm for determining
whether a given sequence of formulas in S is a proof in S of a given
formula. Then there is a number p such that P(p) is true but A, s
unprovable in S. If moreover (iii) there are formulas — A, such that,
foreacha = 0,1,2, ..., —A_ s provable in S only if P(a) s false,
then — A, 1s also unprovable in S (so A, is undecidable in S).

The predicate P(a) can be of a very simple form (sug-
gested in Kleene (1936, Footnote 22), and used in his (1943,
1952): “for all x, Q(a,x)” where Q is a decidable predicate. (A
fuller exposition is in Kleene 1976, 768—69.)

As I expressed the generalized Godel theorem in a lecture
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at the University of Wisconsin in the fall of 1935 (with my
(1936) already written, and knowing the contents of Church
(1936) but not yet of Turing (1937)), the theory of the natural
numbers—indeed just the theory of the limited part of it
represented by the predicate P(a)—offers inexhaustible
scope for mathematical ingenuity. No one will ever succeed
in writing down explicitly a list of principles (given as a formal
system) sufficient for providing a proof of each of the prop-
ositions P(a) for a = 0, 1, 2, ... that is true.

To recapitulate, by Godel’s first incompleteness theorem,
as he gave it in (1931a), none of the familiar formal systems
(like that of Principia Mathematica), and by the generalized
version of the theorem, which Godel accepted in a “Note
added 28 August 1963” to the van Heijenoort (1967) trans-
lation of his (1931a) and in the “Postscriptum” to the Davis
(1965) reprint of his (1934), no conceivable formal system,
can be both correct and complete for the elementary theory
of the natural numbers.

In Godel’s first incompleteness theorem (as stated above
for Principia Mathematica and related systems), the unprova-
bility of G follows from the assumption that § is simply con-
sistent. By Godel's numbering, the property of the simple
consistency of § can be expressed in § itself by a formula, call
it “Consis”. And in fact the reasoning by which Godel showed
that “Simple consistency implies G is unprovable” can be for-
malized within § as a proof of the formula

Consis — G,

noting that G says “G is unprovable”! Therefore, if Consis
were provable in S, by one application of the rule of inference
shown first above, G would be, contradicting Godel’s first in-
completeness theorem if § is consistent. So we have Godel’s
second incompleteness theorem of (1931a): If S is simply con-
sistent, the formula Consis expressing that fact is unprovable in S.

Hilbert’s idea had been to prove the consistency of a suit-
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able formal system § of mathematics by finitary methods. In
the interesting case that § is a formalization embracing some
ideal (non-finitary) mathematics, the methods to be used in
proving its consistency should not include all those formal-
ized in S. Godel's second theorem shows that not even all the
methods formalized in S would suffice!

The consequence is that, if Hilbert’s idea can be carried
out, it cannot be done as simply as presumably had been
hoped. Methods will have to be accepted as finitary, and used
in the consistency proof of a system S, that are not formal-
1zable in S. Indeed, this has now been done for the arithmetic
of the natural numbers by Gentzen (1936), Ackermann
(1940), and Godel (1958a), and for analysis (real-number
theory) by Spector (1961), extending Godel (1958a).

With the two incompleteness theorems of Godel (1931a),
the whole aspect of work on the foundations of mathematics
was profoundly altered.

We have described Godel’s celebrated results in (1930a)
and (1931a) in the context of the outlook on foundations at
the time. He clearly addressed—and solved—problems ex-
isting at that time. Each of these results can be construed as
a piece of exact mathematics: on the level of classical number
theory in the case of (1930a), and of finitary number-theory
in the case of (1931a). The picture mathematicians could en-
tertain of the possibilities for the use of formal systems has
been refocused by Godel’s discoveries. Now we know that
their use cannot give a resolution of the foundational prob-
lems of mathematics as simply as had been hoped. But, in my
view, formal systems will not go away as a concern of math-
ematicians. Recourse to the axiomatic-deductive method, as
refined in modern times to formal systems, provides mathe-
maticians with the means of being fully explicit about what
they are doing, about exactly what assumptions they have
used in a given theory. It is important to have this explicitness
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when they are engaged in conceiving new methods (as Go-
del’s first (193 1a) theorem shows that for progress they must)
and attempting to assure themselves of their soundness
(which by Goédel’s second theorem cannot be done simply
by the metamathematical applications of only the same
methods).

In the period we are reviewing (after (1930a) and prior
to 1938a)), Godel made a number of other significant con-
tributions.

In (1934), building on a suggestion of Herbrand (see van
Heijenoort (1967, 619)), he introduced the notion of “gen-
eral recursive functions”, which I studied in (1936). This is
one of the two equivalent notions that were identified with
“effective calculability” by Church’s thesis mentioned above.
Nevertheless, Godel did not accept the thesis until later
(Kleene 1981, 59-62). Concerning those notions and the
third one of Turing, and generalizations of them, a very
extensive mathematical theory has been developed (with an
important role played by the Herbrand-Gédel notion) and
applied to other branches of mathematics (Kleene (1981,
62—-64)).

In (1931b), Godel explained how some of his undecidable
propositions become decidable with the addition of higher
types of variables, while of course other undecidable propo-
sitions can be described. In a trenchant paper (1935), he
showed that in the systems with higher types of variables in-
finitely many of the previously provable formulas acquire
very much shorter proofs. He also offered contributions to
the so-called Entscheidungsproblem (decision problem) for the
first-order predicate logic (1930f, 1933b). This is the prob-
lem of finding an algorithm, at least for a described class of
formulas, for deciding whether a formula is or is not prov-
able. (1931c) is historic as one of the first results on a “formal
system” with uncountably many symbols.
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The intuitionistic school under Brouwer came to recog-
nize the advantages of formalization for making explicit the
boundaries of a given body of theory. So Heyting in (1930a,
1930b) gave a formalization of the intuitionistic logic and
of a portion of the intuitionistic mathematics. This has had
various mathematical applications. Godel’s papers (1932c,
1932d, 1932¢) were important contributions to the study of
these systems.

The article of Smorynski and that of Paris and Harring-
ton in Barwise (1977), and Dawson (1979), can serve as a
sampling of the reverberations after nearly fifty years from
Godel’s (1931a) incompleteness theorems.

GODEL’S RELATIVE CONSISTENCY PROOF FOR THE
AXIOM OF CHOICE AND FOR THE GENERALIZED
CONTINUUM HYPOTHESIS (1938a, 1938b, 1939a, 1939b)

As remarked above, in Cantor’s set theory, the set of the
sets of natural numbers, and the set of the real numbers, have
a cardinal number 2% greater than the cardinal number X,
of the set of the natural numbers, which is the least infinite
cardinal.

In Cantor’s theory, the cardinal number N, next greater
than R is identified as the cardinal of the set of all possible
linear orderings of the natural numbers in which each sub-
set of them has a first member in the ordering (“well-
orderings”). Cantor’s set theory would be greatly simplified
if 2%, which is the infinite cardinal greater than X coming to
mind first, is actually the next greater cardinal. Cantor con-
jectured in (1878) that it is, that 2% = N . This conjecture is
called the “continuum hypothesis” (CH); and it became the
central problem of set theory to confirm or refute CH. Sixty
years later, with the problem still unsolved, Gédel’s results in
(1938a, 1938b, 1939a, 1939b) put the matter in a new light.
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Using Cantor’s ordinal numbers, all the infinite cardinals

can be listed in order of magnitude as

N R, Ry, o, Ry oy
where a ranges over the natural numbers as finite ordinals,
and then on into Cantor’s infinite (“transfinite”) ordinals.
The “generalized continuum hypothesis” (GCH) is that, for
each ordinal a, 2% = X_, |, where 2% is the cardinal of the
set of all the subsets of a set of cardinal X,,.

The theory of sets was axiomatized after the paradoxes
had appeared. This consisted in listing a collection of axioms,
regarded as true propositions about sets, including axioms
providing for the existence of many sets but not of too “wild”
sets such as had given rise to the paradoxes. (We recall the
Skolem paradox about such systems of axioms in first-order
logic.) As a standard list of axioms for set theory, I will take
those commonly called the Zermelo-Fraenkel axioms. These
arise from the first axiomatization by Zermelo in (1908) by
using a refinement proposed by Fraenkel in (1922). One of
the axioms, called the “axiom of choice” (AC), has been re-
garded as less natural than the others. One form of it says
that, if we have a collection § of non-empty sets, no two of
which have a member in common, there is a “choice set” C
containing exactly one member from each set in the collec-
tion S. By ZFC I shall mean all the Zermelo-Fraenkel axioms,
and by ZF the system of those axioms without AC.

Cantor had not been thinking of his conjecture that 2%
= R, (CH) relative to a set of axioms. But after choosing an
axiomatization, say ZF, there are three possibilities: (1) 2% =
R, is provable (using elementary logic) from the axioms. (2)
—(2% = X)) is provable from the axioms. (3) Neither (1) nor
(2). This is assuming the axioms are consistent, so that not:
(4) Both (1) and (2).

What Godel did was to exclude (2); he showed that adding
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2% = X to the axioms will not lead to a contradiction (if a
contradiction is not already deducible from the axioms with-
out the addition).

To put the matter in its simplest terms, Godel, using only
things about sets justified by the axioms ZF, defined a class L
of sets, which he called the “constructible sets”, such that all
the axioms are true when the “sets” for them are taken to be
just the constructible sets L. In effect, L constitutes a kind of
skeletal model of set theory—not all the sets presumably in-
tended, but still enough to make all the axioms true. And in
this model, AC and CH, and indeed GCH, are all true.

Since nothing is used about sets in this reasoning with L
that cannot be based on the axioms ZF, it can be converted
as follows into a demonstration that if ZF (taken as the formal
system with the mathematical axioms of ZF and the logical
axioms and rules of inference of the first-order predicate
calculus) is (simply) consistent, so is ZF + AC + GCH (sim-
ilarly taken). Suppose ZF 1s consistent, and (contrary to what
we want to prove) that a pair of contradictory formulas A
and —A (which we can take to be closed) are provable in ZF
+ AC + GCH. Let B" come from any closed formula B by
replacing each part of the form VxC by Vx(xeL — C) and
each part of the form 3xC by Ix(xeL. & C), in effect restrict-
ing the variable x to range over L. Here xeL is definable
within ZF. Now for the axioms A, A, A,, ... of ZF + AC +
GCH, we can prove in ZF A}, A%, AL, ..., and then continue
by the reasoning that gave the contradiction A and —A in
ZF + AC + GCH to get the contradiction A* and — A’ in
ZF, contradicting our supposition that ZF is consistent. Thus
Godel gave a consistency proof for ZF + AC + GCH relative
to ZF.

It 1s natural to ask whether one can also rule out (1), that
is, whether the negation —2% = X, of the continuum hy-
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pothesis can be added consistently to ZF or indeed to ZFC
(provided ZF is consistent). It remained for Paul Cohen in
(1963, 1964) to do this. He accomplished this by using an-
other model (quite different from Gédel’s) in which all the
axioms of ZFC and also —2% = X, hold. (For a comment by
Godel, see 1967.)

Thus, combining Godel’s and Cohen’s results, 2% = R is
independent of ZFC. Similarly, combining results of Godel
and Cohen, AC is independent of ZF. These results of Gédel
and Cohen have ushered in a whole new era of set theory, in
which a host of problems of the consistency or independence
of various conjectures relative to this or that set of axioms
are being investigated by constructing models.

PRINCETON (IAS) 1939-1978

After Godel’s return to Princeton in 1939, he never again
left the United States. He became a U.S. citizen in 1948. He
received annual visiting appointments from the Institute for
Advanced Study from 1940-41 on, became a permanent
member in 1947, a professor (in the School of Mathematics)
in 1953, and retired in 1976. He was keenly interested in the
affairs of the Institute, and conscientious in work for the In-
stitute, especially in the evaluation of applicants.

I have already reviewed most of his work that was pub-
lished in his own papers. The last paper of his in the Bibli-
ography (1958a), mentioned above, gives a new interpreta-
tion of intuitionistic number theory, which Wang (1981, 657)
says “was obtained in 1942. Shortly afterwards he lectured
on these results at Princeton and Yale.” Godel’s (1944, 1947)
are exceedingly suggestive expository and critical articles on
Russell’s mathematical logic and on the continuum problem.

In December 1946, Godel presented a paper to the
Princeton Bicentennial Conference on Problems of Mathe-
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matics, published in 1965, suggesting a non-constructive ex-
tension of formal systems, or of the notion of “demonstra-
bility”, to be obtained by using stronger and stronger “axioms
of infinity” asserting the existence of large cardinal numbers
in set theory. He wrote, “It is not impossible that for such a
concept of demonstrability some completeness theorem
would hold which would say that every proposition expres-
sible in set theory is decidable from the present axioms plus
some true assertion about the largeness of the universe of all
sets.” The paper makes a similar suggestion regarding the
concept of mathematical “definability”.

Godel and Einstein, both at the Institute for Advanced
Study, saw much of each other. Because of Godel’s interest in
Kant’s philosophy of space and time, Godel became inter-
ested in general relativity theory, on which he worked during
1947 to 1950 or 1951. Three short articles (1949a, 1949b,
1950) resulted. According to R. Penrose, as reported in Krei-
sel (1980, 214—-15), “[these articles] were highly original and,
in the long run, quite influential. . . . Godel’s work served as
a cross check on mathematical conjectures and proofs in the
modern global theory of relativity.” (For summaries, see Krei-
sel loc. cit. and Dawson 1983, 266—67, the Addenda and Cor-
rigenda to which reports on a controversy about it.)

Godel was deeply interested in philosophy, and in the rel-
evance of philosophical views to the mathematical problems
with which his work dealt. Wang writes (1981, Footnote 9),
“we may conjecture that between 1943 and 1947 a transition
occurred from Godel’s concentration on mathematical logic
to other theoretical interests which are primarily philosoph-
ical. ... From [his papers (1946, 1947)] one gets the clear
impression that Godel was interested only in really basic ad-
vances.” Kreisel (1980, 204—13) calls Godel’s first proposal in
(1946) “Godel’s programme”, and discusses it while citing
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Kanamori and Magidor (1977) for more complete references
to the work done on the program over the last thirty-five
years.

According to Wang (1978, 183; 1981, 658), Godel worked
on several papers (as early as 1947, perhaps), which in the
end he did not publish. One of these was his Josiah Willard
Gibbs Lecture, Some Basic Theorems on the Foundations of Math-
ematics and their Philosophical Implications, which he read from
a manuscript to the American Mathematical Society on De-
cember 26, 1951 (I was present). Some of the ideas in this
lecture are reported by Wang in the pages cited as Godel
(1974a). Godel left a considerable quantity of notes (almost
5,000 pages, according to Kreisel 1980, 151). Undoubtedly,
these will constitute a mine for scholars for quite some time
into the future.

Godel contributed reflections on some of his papers as
emendations, amplifications, and additions to reprints and
translations (see Bibliography, 1939, 1946, 1949b, 1963-
66a).

Godel was rather retiring. But he was kind and responsive
to qualified interlocutors who took the initiative to engage
him in discussions. So it has come about that various reflec-
tions and views of his have been reported with his permission
in writings by other authors. Also, on occasions, he took the
initiative to volunteer pronouncements other than in papers
of the usual sort. I have included in this Bibliography all the
material of these two kinds that has come to my attention
(without attempting to draw a line between the substantial,
and the slight). This accounts for (1931d) and all of the items
after (1950), except (1958a) and (1963—66a).

On the occasion of the award of an Einstein Medal to
Godel on March 14, 1951, John von Neumann began his
tribute to Godel (von Neumann 1951) with the words:
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Kurt Godel’s achievement in modern logic is singular and monumen-
tal—indeed it is more than a monument, it is a landmark which will remain
visible far in space and time.
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ANNOTATED BIBLIOGRAPHY

I have listed the original items in the order of their authorship by Godel,
insofar as I could find information to base this on. Thus 1939b, commu-
nicated by Godel on February 14, 1939, is put after 1939a, which is a set
of notes by George W. Brown published in 1940 on lectures delivered by
Godel in the fall term of 1938-39; and 1934 and 1946, only published in
1965, are in the right order. This has involved using dates of presentation
for the eleven items listed from Ergebnisse eines mathematischen Kolloguiums
(ed. Karl Menger). Not listed are four brief contributions by Gédel to dis-
cussions in these Ergebnisse (4:4, 4:6, 4:34(51), 7:6), twenty-seven reviews
by Godel in Zentralblatt fir Mathematik und threr Grenzgebiete 1931-36, six
reviews by Godel in Monatshefte fiir Mathematik und Physik 1931-33, and the
Spanish translations in Mosterin (1981} of all of the papers of Godel ex-
cept 1932a, 1932b, and 1933a. (In Dawson (1983), the four Ergebnisse
items are cited (just before [1933a] and as [1933], [1933d], [1936]), as well
as the twenty-seven Zentralblait reviews and the Mosterin (1981) transla-
tions, while the six Monatshefte reviews are cited in its Addenda and Cor-
rigenda.)

The other translations and reprintings of Godel’s papers are cited within
the wems for the originals. Eight of the translations (with no inputs by
Godel. as far as I know) are thus cited concisely through their reviews or
listings in the Journal of Symbolic Logic. Books (not journals) are generally
cited through the Reference section. For example, the English translation
of 1930a is on pp. 583-91 of the book listed in the References as “van
Heijenoort, J., ed. 1967.

A work entitled Kurt Godel, Sein Leben und Wirken, W. Schimanovich and
P. Weibel, eds., is to be published by Verlag Holder-Pichler-Tempsky, Vi-
enna. It will contain some of Godel’s works and various biographical and
interpretative essays.

The Association for Symbolic Logic 1s arranging for the publication in the
original (by Oxford University Press, ed. by S. Feferman et al.), and when
the original is in German also in English translation, of all of Godel’s pub-
lished works, with introductory historical notes to them and a biographical
introduction and survey. (Volume I (1986) contains Godel's published
works up through 1936; the rest will be in Volume II, probably in 1986.
A further volume or volumes are projected to contain a selection of un-
published material from Godel's Nachlass.)

1930

a. Die Vollstindigkeit der Axiome des logischen Funktionenkalk-
tls. Monatsh. Math. Phys., 37:349-60. (English trans: van Hei-
jenoort, 1967, pp. 583-91, with two comments by Godel, pp.
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510-11; also see Kleene, 1978; reprinted in: Berka and Kreiser,
1971, pp. 283-94.)

b. Uber die Vollstandigkeit des Logikkalkiils (talk of 6 Sept. 1930).
Die Naturwissenschaften, 18:1068.

¢. [Remarks in] Diskussion zur Grundlegung der Mathematik [7
Sept. 1930]. Erkenntnis (1931), 2:147—48.

d. Nachtrag [to the preceding remarks]. Erkenntnis, 2:149-51.
(Italian trans: Casari, 1973, pp. 55-57.)

e. Einige metamathematische Resultate tiber Entscheidungsdefin-
itheit und Widerspruchsfreiheit. Anz. Akad. Wiss. Wien, Math.-
naturwiss. Kl. 67:214-15. (English trans.: van Heijenoort, 1967,
pp. 595-96; reprinted in: Berka and Kreiser, 1971, pp. 320-
21.)

f. Ein Spezialfall des Entscheidungsproblems der theoretischen
Logik. Ergeb. math. Kollog. (for 1929-30, publ. 1932), 2:27—
28.

1931

Uber formal unentscheidbare Sitze der Principia Mathematica
und verwandter Systeme 1. Monatsh. Math. Phys., 38:173-98.
(English trans., 1962, see J. Symb. Logic, 30:359-62; also in:
Davis, 1965, pp. 5-38 (see J. Symb. Logic, 31:486-89); with a
note by Godel, in: van Heijenoort, 1967, pp. 596-616. Italian
trans.: Agazzi, 1961, pp. 203-28; Portuguese trans.: Lourenco,
1979, pp. 245-90.)

b. Uber Volistindigkeit und Widerspruchsfreiheit. Ergeb. math.
Kollog. (for 22 Jan. 1931, publ. 1932), 3:12-13. (English trans.,
with a remark by Godel added to Ftn. 1: van Heijenoort, 1967,
pp. 616-17.)

Eine Eigenschaft der Realisierung des Aussagenkalkils. Ergeb.
math. Kolloqg. (for 24 June 1931, publ. 1932), 3:20-21.

d. Letter to Zermelo, October 12, 1931. In: Grattan-Guinness,
1979, pp. 294-304.

Uber Unabhingigkeitsbeweise im Aussagenkalkiil. Ergeb.
math. Kollog. (for 2 Dec. 1931, publ. 1933), 4:9-10.

1932

a. Uber die metrische Einbettbarkeit der Quadrupel des R, in Ku-
gelflichen. Ergeb. math. Kollog. (for 18 Feb. 1932, publ. 1933),
4:16-17.
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b. Uber die Waldsche Axiomatik des Zwischenbegriffes. Ergeb.
math. Kollog. (for 18 Feb. 1932, publ. 1933), 4:17-18.

¢. Zum intuitionistischen Aussagenkalkiill. Anz. Akad. Wiss. Wien,
Math.-naturwiss. KI. (for 25 Feb. 1932), 69:65-66. (Reprinted,
with an opening clause attributing the question to Hahn, in
Ergeb. math. Kolloq. (for 1931-32, publ. 1933), 4:40; and in
Berka and Kreiser, 1971, p. 186.)

d. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergeb.
math. Kolloqg. (for 28 June 1932, publ. 1933), 4:34-38. (English
trans.: Davis, 1965, pp. 75-81 (see J. Symb. Logic, 31:490-91).
Portuguese trans.: Lourengo, 1979, pp. 359-69.)

e. Eine Interpretation des intuitionistischen Aussagenkalkiils. Er-
geb. math. Kollog. (for 1931-32, publ. 1934), 4:39-40. (English
trans., 1969, see J. Symb. Logic, 40:498; reprinted in: Berka
and Kreiser, 1971, pp. 187-88).

. Bemerkung uber projektive Abbildungen. Ergeb. math. Kollog.
(for 10 Nov. 1932, publ. 1934), 5:1.

1933

a. With K. Menger and A. Wald. Diskussion iiber koordinatenlose
Differentialgeometrie. Ergeb. math. Kollog. (for 17 May 1933,
publ. 1934), 5:25-26.

b. Zum FEntscheidungsproblem des logischen Funktionenkalkiils.
Monatsh. Math. Phys. (received 22 June 1933), 40:433—43. (For
a correction, see Goldfarb, 1981.)

1934

On Undecidable Propositions of Formal Mathematical Systems. Mimeo-
graphed notes by S. C. Kleene and ]. B. Rosser on lectures at
the Institute for Advanced Study, Feb.—May, 1934, 30 pp. (Ex-
tensively distributed, deposited in some libraries, and listed in
the J. Symb. Logic Bibliography 1:206; printed with correc-
tions, emendations, and a Postscriptum, by Godel in Davis 1965,
pp- 41-74 (see J. Symb. Logic, 31:489-90). A relevant Godel
letter of 15 Feb. 1965 is quoted there on p. 40, and in Kleene,
1981, pp. 60, 62, and of 23 April 1963 in van Heijenoort 1967,
p- 619. Portuguese trans. in Lourenco 1979, pp. 291-353.)

1935

Uber die Linge von Beweisen. Ergeb. math. Kolloq. (for 19 June
1935, with a remark added in the printing 1936), 7:23-24. (En-
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glish trans.: Davis 1965, pp. 82-83 (see J. Symb. Logic. 31:491).
Portuguese trans.: Lourengo 1979, pp. 371-75.)

1938

. The consistency of the axiom of choice and of the generalized
continuum-hypothesis. Proc. Natl. Acad. Sci. USA (communi-
cated 9 Nov. 1938), 24:556-57.

. The consistency of the generalized continuum-hypothesis. Bull.
Am. Math. Soc. (abstract of a talk on 28 Dec. 1938, publ. 1939),
45:93.

1939

a. The Consistency of the Axiom of Choice and of the Generalized Contin-

wum-Hypothesis with the Axioms of Set Theory. Notes by G. W. Brown
on lectures at the Institute for Advanced Study during the fall
term of 1938-39. Ann. Math. Stud., no. 3. Princeton, N.J.:
Princeton U. Press, 1940. (Reprinted 1951 with corrections and
three pages of notes by Godel; the seventh and eighth printings,
1966 and 1970, include additional notes and a bibliography.
Russian trans. 1948, see ]. Symb. Logic. 14:142.)

. Consistency-proof for the generalized continuum-hypothesis.
Proc. Natl. Acad. Sci. USA (communicated 14 Feb. 1939),
25:220-24. (Reprinted in Felgner, 1979; corrections in (1947,
Ftn. 23, = Fin. 24 in the 1964 reprint); also see Kleene 1978
and Wang 1981, Ftn. 7.)

1944

Russell’s mathematical logic. In Schilpp (1944, pp. 123-53). (Re-

printed, with a prefatory note by Gédel, in Benacerraf and Put-
nam 1964, pp. 211-32; Italian trans.: 1967, see J. Symb. Logic,
34:313; French trans.: 1969, see J. Symb. Logic, 40:281; re-
printed, with Godels 1964 prefatory note expanded, a refer-
ence supplied in Ftn. 7, and Ftn. 50 omitted, in Pears 1972, pp.
192-226; Portuguese trans.: Loureng¢o 1979, pp. 183-216.)

1946

Remarks before the Princeton Bicentennial Conference on Prob-

lems m Mathematics [December 17], 1946. Plans for publication
of the papers presented at the conference fell through, as the
conferees learned only much later. When the Davis anthology
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(1965) was being planned, Kleene drew the attention of the
publisher to this paper of Godel and supplied a copy of the text
that had been in his file since 1946, which with Gédel’s permis-
ston (and Godel’s addition of a four-line footnote) was then
published as Davis (1965, 84—-88). (Italian trans.: 1967, see J.
Symb. Logic, 34:313; reprinted, with trifling changes in punc-
tuation and phrasing, and the substitution of “It follows from
the axiom of replacement” for “It can be proved” at the end, in
Klibansky 1968, pp. 250-53; Portuguese trans.: Lourenco
1979, pp. 377-83.)

1947

What is Cantor’s continuum problem? Am. Math. Mon., 54:515—

d.

25; errata, 55:151. (Reprinted, with some revisions, a substan-
tial supplement, and a postscript, by Godel, in Benacerraf and
Putnam 1964, pp. 258 -73; Italian trans.: 1967, see J. Symb.
Logic, 34:313; Romanian trans.: Parvu 1974, pp. 317-38; Por-
tuguese trans.: Lourenco 1979, pp. 217-44; see (1958¢) and
(1973).)

1949

An example of a new type of cosmological solutions of Einstein’s
field equations of gravitation. Rev. Mod. Phys., 21:447-50.

. A remark about the relationship between relativity theory and

idealistic philosophy. In Schilpp (1949, pp. 555-62). (German
trans., with some additions by Gédel to the footnotes: Schilpp
1955, pp. 406-12.)

1950

Rotating universes in general relativity theory. In: Proc. Int. Cong.

Math. (Cambridge, Mass., 1950), vol. 1, pp. 175-81. Providence,
R.I.: American Mathematical Society, 1952.

1952

[A popular interview with Godel:] Inexhaustible. The New Yorker,

Aug. 23, 1952, pp. 13-15.

1956

Godel expresses regret at Friedberg’s intention to study medicine

in: The prodigies. Time, March 19, 1956, p. 83.
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1957

Kreisel (1962, pp. 140—42) states some results as having been com-

a.

b.

C.

municated to him by Godel in 1957.
1958

Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes. Dialectica, 12:280-87. (Reprinted in Logica, Stu-
dia Paul Bernays Dedicata, Bibliotheque Scientifique no. 24, pp.
76-83. Neuchatel: Griffon, 1959. Russian trans. 1967, see J.
Symb. Logic, 35:323; English trans.: 1980 [with a bibliography
of work resulting from this paper], J. Philos. Logic, 9:133-42.
According to the review of this translation by Feferman, Math.
Rev., 81i:3410—11, there was an unpublished earlier English
trans., which was revised several times by Godel and “contained
a number of further notes which considerably amplified and in
some cases corrected both technical and philosophical points.”
Italian trans.: Cagnoni 1981, pp. 117-23; also see (1961) and
Spector (1961).)

Kreisel (1958, pp. 321-22) attributes the substance of his re-
marks 2.1 and 2.3 to Godel.

A statement by Godel is quoted in Ulam (1958, F. 5, p. 13).

1961

A postscript by Godel is on p. 27 of Spector (1961).

b.

C.

1963 —-66

Benacerraf and Putnam (1964), Davis (1965), and van Heijen-
oort (1967) include various contributions by Godel to their re-
prints and translations of his (1930a), (1931a), (1931b), (1934),
(1944), and (1947).

A letter from Godel is quoted in von Neumann (1966, pp. 55—
56).

A 1966 greeting by Godel is on p. (viii) of Bulloff et al. (1969).

1967

An extract from a 30 June 1967 letter from Godel is in Rautenberg

(1968, p. 20).
1973

A communication from Goédel of October 1973 is quoted in Green-

berg (1980, p. 250).
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1974

a. Communications from Godel are reproduced in Wang (1974,
pp- 8-12, 84-88, 186-90, and 324-26).

b. Godel contributed a statement to the preface to Robinson
(1974).

c. Reinhardt (1974, Ftn. 1, p. 189) reports on discussions with
Godel.

d. A 1974 memorial tribute to Robinson by Godel appears oppo-
site the frontispiece of Saracino and Weispfennig (1975).

197677

a. Wang (1981), begins with the words, “The text of this article
{but not the footnotes and section headings} was done together
with Godel in 1976 to 1977 and was approved by him at that
time.”

b. The text of Kleene (1978) is composed of communications from
Godel of May and June 1977. See Kreisel’s review in the Zen-
tralblatt (1979) 401:12-13.




