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Levinson attended Revere High School, where, having been diagnosed with rheu-
matic fever, he was unable to participate in any athletic activity. This illness probably 
contributed, moreover, to his lifelong hypochondria. To help the family finances, he 
worked evenings in a neighborhood grocery store.

In 1929 Levinson entered the Massachusetts Institute of Technology and majored in 
electrical engineering. He received his B.S. and M.S. degrees in electrical engineering in 
1934. While still an undergraduate he took almost all the graduate mathematics courses 
offered at MIT and wrote a thesis under Norbert Wiener. According to H. D. Phillips, 
the head of the mathematics department, this document had “results sufficient for a 
doctoral thesis of unusual excellence.”

One of the mathematics courses that Levinson took in the 1933–34 academic year was 
Wiener’s course on Fourier series and integrals, which proved to be a turning point in 
Levinson’s career. As he described it:

Norman Levinson was a preeminent American mathema-
tician who made fundamental contributions to complex 
function theory, differential equations, and analytic 
number theory. He was born in Lynn, Massachusetts, to 
a family of poor Russian-Jewish immigrants. His father 
was a shoe factory worker who earned three dollars a 
week and whose education consisted of having attended 
a yeshiva for a few years. His mother was illiterate. When 
his father changed jobs, the family moved to the nearby 
town of Revere; there they bought a small house that had 
no bathroom and was heated by an oil stove in kitchen. 
But despite poverty and a low educational level, Norman’s 
parents managed to send him and his sister Pauline to 
college. “We were very poor,” he recalled, “but we didn’t 
think of ourselves as poor.”

N O R M A N  L E V I N S O N
August 11, 1912–October 10, 1975

Elected to the NAS, 1967
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NORMAN LEVINSON

I became acquainted with Wiener in September 1933, while still a student 

of electrical engineering, when I enrolled in his graduate course. At that 

level he was a most stimulating teacher. He would actually carry on his 

research at the blackboard. As soon as I displayed a slight comprehension 

of what he was doing, he handed me the manuscript of Paley-Wiener [a 

book, Fourier Transforms in the Complex Plane, that Wiener coauthored 

with Raymond E. A. C. Paley] for revision. I found a gap in a proof and 

proved a lemma to set it right. Wiener thereupon sat down at his type-

writer and sent it off to a journal. A prominent professor does not often 

act as a secretary for a young student. He convinced me to change my 

course from electrical engineering to mathematics. He then went to visit 

my parents—unschooled immigrant working people living in a run-down 

ghetto community—to assure them about my future in mathematics.[1]

After completing his B.S. and M.S. degrees in electrical engineering, Levinson applied 
to become an MIT doctoral student in mathematics. But because the mathematics 

department felt that he had already done sufficient 
work for a doctorate, Wiener and Phillips arranged 
for him to receive an MIT Redfield Proctor Trav-
eling Fellowship and assured him that he would 
receive his doctorate at the end of his traveling 
year. Levinson used the fellowship to spend the 
year in Cambridge, England, to work with G. H. 
Hardy. His parents were not happy with his plan 
to go overseas, but Wiener visited them again 
and convinced them of the wisdom of the move. 
Levinson’s year in Cambridge was very productive, 
although there is some question about how much 
contact he actually had with Hardy. Nevertheless, 
Hardy was certainly familiar with Levinson’s work, 
as much of it involved extensions of and improve-
ments on some of Hardy’s results.

Upon his return to MIT in 1935, Levinson received his Ph.D. degree for a thesis titled 
Non-Vanishing of a Function. He was then awarded a National Research Council 
Fellowship for a two-year stay at the Institute for Advanced Study (IAS) in Princeton, 
New Jersey, with John von Neumann as his nominal supervisor.

According to Levinson’s wife 
Fagi: 

Vannevar Bush took [Hardy] 
around and every time he 
showed him a new thing, 
Hardy said, “What a marvelous 
theological institution this is!” 
Finally, [Bush] said, “It’s not a 
theological institution!” And 
Hardy said, “Then why don’t 
you hire Levinson?”
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Because of widespread unemployment and 
anti-Semitism in the United States during 
the mid-1930s, the job prospects for 
Jewish mathematicians were very bad. The 
situation was further complicated by the 
influx of high-quality Jewish mathemati-
cians fleeing Germany and its neighbors 
from 1937 on. However, in 1936 Jesse 
Douglas (a Fields Medal winner) became 
ill and was unable to teach his courses 
at MIT. Wiener recommended that 
Levinson be hired to replace Douglas, 
but anti-Semitism at MIT thwarted this 
effort; the school’s administration turned 
down Wiener’s recommendation. Hardy, 
who had come to Princeton for its 200th 
anniversary celebration, also visited MIT. 
There are several versions of the following 
encounter. According to Levinson’s wife 
Fagi:

Vannevar Bush took [Hardy] 

around and every time he showed 

him a new thing, Hardy said, 

“What a marvelous theological 

institution this is!” Finally, [Bush] 

said, “It’s not a theological institu-

tion!” And Hardy said, “Then why 

don’t you hire Levinson?”[2]

Levinson was appointed as an instructor at MIT in February 1937, leaving his IAS 
fellowship before its term was complete, and was promoted to assistant professor in 
1939. Meanwhile, he married Zipporah Wallman (generally known as Fagi) on February 
11, 1938. She was the sister of the topologist Henry Wallman. They had two daughters, 
Sylvia in 1939 and Joan (Zorza) in 1941.

Levinson in 1938.  
(Photo courtesy MIT Museum.)
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From 1935 until about 1940 Levinson devoted himself to research in harmonic and 
complex analysis. His work was greatly influenced by the methods of Paley and Wiener, 
as expounded in Fourier Transforms in the Complex Plane, particularly in his use both of 
real and complex variable techniques. This was a tremendously productive period for 
Levinson, resulting in more than 15 publications. Many of these results, together with 
numerous others, were collected in his 1940 book Gap and Density Theorems, published 
by the American Mathematical Society in its Colloquium Publication Series (Volume 
29). Topics covered in the book included the completeness of sequences of complex 
exponentials, the study of Fourier transforms that vanish over an interval, analytic func-
tions whose rate of growth along a line is determined by their growth on a sequence of 
points on that line, and some properties of Dirichlet series. The book concluded with a 
striking generalization of a Tauberian theorem due to Hardy and John E. Littlewood. In 
his review in Mathematical Reviews, G. Polya stated, “The author contributes something 
essential to all his subjects, obtains very precise results, and gives new proofs. Some of his 
proofs are long and difficult, but the details are presented with much care and precision.” 
An extremely detailed summary of the book’s content and the subsequent work it 
inspired can be found in Raymond Redheffer’s essay in Volume 2 (1997) of the Selected 
Papers of Norman Levinson (Boston-Basel-Berlin: Birkhäuser).

Levinson’s style could be characterized as old-school hard analysis. Particularly in his early 
papers, his proofs tended to be long and computationally intensive. Moreover, his writing 
was quite austere. There was often little or no introductory material. Rather he would 
go almost directly to the statement of his results and their proofs. Nevertheless, his work 
was very insightful and amply rewards the effort involved in following his arguments. 
As an aside, I note that when I was preparing to write up my dissertation under Levin-
son’s supervision in 1955, he told me to omit all introductory material and give only the 
results and proofs. Consequently, I had to pad my thesis for publication!

With the exceptions of his year at Cambridge, his IAS fellowship, and his year as a 
Guggenheim fellow in Copenhagen (1948–1949), Levinson spent his whole academic 
career at MIT. Starting as an undergraduate in 1929 he became an instructor (1937–
1939), an assistant professor (1939–1944), an associate professor (1944–1949), professor 
(1949–1971), and Institute Professor (1971–1975). 

Living at the height of the Great Depression, Levinson was highly disturbed by Amer-
ica’s rampant unemployment, anti-Semitism, and discrimination against blacks. The 
American Communist Party shared these sentiments, and Levinson joined in 1937. 
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He gradually became disenchanted with communism, however—particularly with the 
excesses of the Soviet regime—and by 1945 had drifted out of the party. But he retained 
a lifelong concern for social justice. In 1953, Levinson and two other MIT faculty were 
called to testify before the House Un-American Activities Committee. Much to its credit, 
MIT provided the three professors with highly skilled legal counsel. The committee 
wanted the three to name fellow party members, but while the other two were willing to 
do so, Levinson refused to comply. The lawyer arranged with the committee to have the 
other two testify first and require Levinson to testify only about his own activities. The 
following was his final statement to the committee in response to a question: 

Mr. Kunzig [committee council]: “...Professor, you said very emphatically 

that the danger today was the hard core of underground members of the 

Communist Party in America. Isn’t it true then, that every Communist who 

is exposed, who is brought to the light of the American people, is less-

ening that danger? In other words, that helps America?”

 Dr. Levinson: “Yes, I would agree, with one very important qualifica-

tion—that it’s very important to make sure that it’s a real Communist that 

is being exposed. The naming of men, innocent men, or men who have 

long left the Communist Party, or who have never been Communist 

Party members—I think that is a terrible thing. I think that any harm to 

nonguilty [sic] people, no matter how desirable it is to catch guilty people, 

should be avoided. I think—I think it is the American way—not to hurt the 

innocent. I think every effort should be made, in exposing the guilty, to 

avoid doing any damage whatsoever to people who were never commu-

nists, or there may be speculation about them but no real evidence, or 

people who have left the Communist party, and so on. I think this is a very 

important thing.” [3]

Because of the attendant publicity, the years immediately following their testimony were 
very difficult for the three professors. However, MIT stood behind them and took no 
punitive action.

After the publication of his book Gap and Density Theorems, Levinson continued to work 
on and off in complex analysis; and in 1970, in collaboration with his former student R. 
M. Redheffer, he published a textbook titled Complex Variables. However, he also decided 
to switch his main field to the study of linear and nonlinear ordinary and partial differ-
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ential equations. This field was essentially new to him and so it required considerable 
effort to get up to speed.

Levinson’s work on differential equations was many-faceted, and he made numerous 
fundamental contributions to the field. In 1953 he received the Bôcher Memorial Prize 
from the American Mathematical Society. The citation reads: “Eighth award to Norman 
Levinson for his contributions to the theory of linear, nonlinear, ordinary, and partial 
differential equations contained in his papers of recent years.” 

In describing Levinson’s work on ordinary differential equations, we begin with his 
research on stability and asymptotic behavior of solutions of linear systems. Here there 
were two main problems. The first concerned the relationship between the solutions of 
the system

				             x´ = Ax 				    (1)

where A is a constant n x n matrix, x and x´ = dx/dt are n-vectors; and the variable coeffi-
cient system

				             y´ = F(t)y.				    (2)

The question is: When does the solution of the initial value problem for (2) approach a 
solution of (1) as t tends to infinity? Clearly it is necessary that F(t) approximate A for 
large values of t. In [4] and [5] Levinson derived very precise conditions on F(t) that 
guarantee the desired behavior. His results generalized and subsumed all previous results 
on this class of problems. Moreover, his results and methods had a significant impact on 
further progress. This was made abundantly clear in M. S. P. Eastham’s 1989 monograph 
The Asymptotic Solution of Linear Differential Systems: Applications of Levinson’s Theorem, 
which summarized the research that had been done since Levinson’s original publications 
in the 1940s. More recent research [6] established the connection with the so-called 
Evans function, which plays a central role in the study of stability of certain travel-
ing-wave solutions of general parabolic systems. 

The second problem concerned, the nonlinear system

z´ = Az + ƒ(z, z´, t),

where A is a n x n constant matrix and z, z´, and ƒ are n-vectors. It is assumed that all 
the eigenvalues of A have negative real parts and that, for example, ƒ(z, m, t) = o(|z| +|m|) 
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uniformly for t nonnegative. Then if |z(0)|and |z´(0)|are sufficiently small, |z(t)| and 
|z´(t)| are uniformly bounded for nonnegative t and tend to zero as t tends to infinity.[7] 
In particular, this result generalizes a theorem of R. Bellman [8] as well as results of other 
researchers.

In 1927, B. Van der Pol [9] studied the nonlinear differential equation

ẍ – m(1 – x2) ẋ + x = 0, 

where m is a parameter. This equation arose from problems in electrical engineering, and 
the question of interest is the existence and uniqueness of periodic solutions. The term 
m(1 – x2) represents damping and it is clear that, with m > 0, the damping is negative 
for |x| < 1 and positive for |x| > 1. Using graphical methods, Van der Pol showed that, 
for various values of m, solutions exist and rapidly approach a steady-state oscillation as t 
tends to infinity. A. Liénard [10] generalized this result to the case in which the damping 
term is replaced by ƒ(x)x with suitable restrictions on ƒ(x). 

Levinson and his former student Oliver K. Smith [11] considered the more general 
equation

ẍ + f(x, ẋ) ẋ + g(x) = 0. 

Assuming that xg(x) is nonnegative, and that f(x, v) is positive for large |x| and negative 
for small |x| and |v|, they established the existence of periodic solutions. The question 
of uniqueness requires further restrictions. For example, they proved uniqueness for the 
particular case

ẍ+ f(x)ẋ + g(x) = 0,

where f(x) is not necessarily even and g(x) is not necessarily odd. Extensions of this work 
to equations with periodic forcing are due to Levinson and various other authors.

In 1945, M. L. Cartwright and J. E. Littlewood [12] published a paper on a version of 
the forced Van der Pol equation that arose from the study of oscillations in a nonlinear 
network. They indicated the occurrence of several unexpected phenomena, including the 
existence of discontinuous recurrent motions. However, their proofs were quite sketchy. 
This paper triggered Levinson’s interest in the subject. The equation he considered was 
essentially the same as the Cartwright-Littlewood equation except for the replacement of 
the nonlinear term by a piecewise linear term [13]. Specifically, the equation was 
                                                aẍ + p(x)ẋ + ax = b sin(t),
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where a is a small constant, p(x) = 1 for |x| > 1 and p(x) = -1 for |x| < 1, and the constant 
b must be chosen from a certain set of subintervals of the unit interval. This equation 
exhibits the same range of phenomena as the Cartwright-Littlewood equation, and the 
introduction of piecewise linearity greatly clarifies the exposition. Levinson proved that 
the Poincaré map associated with this equation possesses a singular attractor. It is a set of 
measure zero and is not a Jordan curve. Moreover, it contains infinitely many periodic 
orbits as well as discontinuous recurrent motions. Jürgen Moser stated:

One must stress that Levinson’s paper was not just a verification of a 

previously known result. The work of Cartwright and Littlewood in [(12)] 

and their subsequent papers was sketchy…[and] quite obscure, as Little-

wood freely admitted. When I asked [Littlewood] about it in June 1977, 

he said, “Ah. you mean the monster paper [(12)]; it had been read by only 

three people in the world: the authors and [Peter] Swinnerton-Dyer.” So it 

was a major achievement for Levinson to provide a definitive proof of this 

result [14].

In 1959, Steven Smale conjectured [15] that a structurally stable dynamical system in 
three or more dimensions could not have infinitely many periodic orbits. To Smale’s 
surprise [16], Levinson’s work provided an example to show that this conjecture was false. 
Smale analyzed Levinson’s paper and was led to the concept of the horseshoe map, which 
has had a great impact on the development of the modern geometric theory of dynamical 
systems. In 1981 Mark Levi [17] took up the study of Levinson’s equation. He greatly 
clarified the results of Levinson and Smale, and he solved as well some problems left 
open by Littlewood. Levi proved that Levinson’s equation possesses infinitely many stable 
periodic solutions. As Moser pointed out, “Levinson stands at the crossroad between the 
earlier classical theory of dynamical systems and the later geometric developments.”[14]

Levinson made fundamental contributions to inverse scattering theory by establishing 
the connection between scattering data and spectral data. In particular, he related the 
Gel’fand-Levitan method for recovering the potential from the spectrum to the inverse 
scattering problem for the Schrödinger equation [18]. In the Selected Papers of Norman 
Levinson, D. H. Sattinger remarked on Levinson’s work on inverse problems: “The 
Gel’fand-Levitan method for the inverse Sturm-Liouville problem was applied to the 
inverse scattering problem…by Levinson in [19]. The treatment in [19] gives a marvel-
ously concise but complete account of the Gel’fand-Levitan method.”
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In [20], Levinson considered the inverse Sturm-Liouville problem whereby it is assumed 
that the boundary conditions and eigenfunctions of

y´ + (1 – P(x))y = 0 on [0, π]

are known and it is required to find the potential P(x). Specifically, he assumed that the 
potential is Lebesgue integrable and that the boundary conditions are

y(0) cos(a) + y´(0) sin(a) = y(π) cos(b) + y´(π) sin(b) = 0

y(0) cos(a) + y´(0) sin(a) = y(π) cos(c) + y´(π) sin(c) = 0.

He proved that if the spectrum for each of the boundary conditions is given and  
sin(c – b) ≠ 0, then P(x) is uniquely determined. Moreover, he adapted the methods 
used in [18] to show that if P(π – x) = P(x) almost everywhere and a + b = π, then the 
spectrum for one set of boundary conditions suffices to determine the potential.

A natural extension of Levinson’s work on inverse problems is the study of the spectra of 
singular self-adjoint second order differential operators of the form

Lu = – (pu´)´ + qu,

where p, p´, and q are real and continuous functions and p > 0. The problem is said to be 
singular if the interval on which it is considered is either semi-infinite or infinite—or, in 
the case of a finite interval, if the coefficients are badly behaved at one or both of the end 
points. Actually, under suitable restrictions the latter case can be transformed into the 
former case. 

In the case of a semi-infinite interval, consider the problem

Lu = λu,

where λ is an arbitrary complex number. According to H. Weyl [21], if every solution of 
the problem is square integrable on the interval, then L is said to be of limit circle type 
at infinity; otherwise it is said to be of limit point type. This classification depends only 
on the differential operator L and not on the complex constant λ. In the limit point 
case, there is exactly one square integrable solution to the differential equation for any λ. 
In [22] Levinson derived very useful criteria for the limit point case. In other papers he 
considered expansion theorems and the spectra of singular operators, and he extended his 
results on expansion theorems to self-adjoint differential operators of arbitrary order.
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Many of Levinson’s results, along with a very elegant presentation of classical material, 
appeared in his 1955 book, Theory of Ordinary Differential Equations, written in collab-
oration with E. A. Coddington. This book has been the definitive graduate text in the 
subject for many generations, and numerous researchers in differential equations learned 
their trade from it.

Another extremely important aspect of Levinson’s research was his work on singu-
larly perturbed systems of differential equations. In a very influential paper [23], he 
considered the system

x´= fu´ + k,  εu´´ + gu´ + h = 0

for ε > 0, where f, k are given n–vectors and g, h are scalar functions of x, u, t, and ε. For 
ε = 0 the system degenerates to

y´ = fv´ + k,  gv´ + h = 0

and the problem is to find the relationship between solutions of the full system and those 
of the degenerate system. Problems of this sort arise in many applications. The important 
feature of these systems is that g is allowed to vanish at a finite number of points so that 
solutions of the degenerate system may have discontinuities at these points. This occurs, 
for example, in the rescaled unforced Van der Pol equation

εu´´ + (u2 – 1)u´+ u = 0,

which may exhibit discontinuous relaxation oscillations.

A pair (y, v) is said to be a discontinuous solution of the degenerate system if it satisfies 
the system in the ordinary sense on the open intervals between zeros of g. It is assumed 
that g > 0 on the intervals between the zeros of g and at the end points of [a, b]. Finally, 
the jumps at the points of discontinuity are determined by certain technical conditions. 
Given a discontinuous solution of the degenerate system on the interval [a, b] with initial 
conditions y(a), v(a), then for ε and δ sufficiently small the solution (x(t, ε), u(t, ε )) of 
the full system with initial values (x(a), u(a), u´(a)) exists on [a, b] provided that (x(a), 
u(a)) are sufficiently close to (y(a), v(a)) and |u´(a) – v´(a) |ε ≤ δ. Moreover, outside 
of arbitrarily small neighborhoods of the singular points, the solution (x(t, ε), u(t, ε )) 
converges to (y(t), v(t)) uniformly as ε and δ tend to zero, and the initial conditions 
converge. If one also excludes an arbitrarily small right neighborhood of the initial point 
t = a, a similar result holds for the first and second derivatives of u and v. In particular, 
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the solution to the full system exhibits internal layers in the neighborhood of the zeros of 
g, but no boundary layers. Extensive further development of these ideas took place in the 
Soviet Union.[24]

An important special case of the theory developed in [23] concerns the existence of 
periodic solutions of the full system for small ε, in case f, k, g, h depend explicitly on t, 
are periodic of period T, and the degenerate problem possesses a possibly discontinuous 
periodic solution (also of period T). If the periodic solution of the degenerate problem is 
asymptotically stable, then for ε sufficiently small the full system has a unique periodic 
solution of period T that also is asymptotically stable.

In collaboration with his former student J. J. Levin, Levinson studied the relationship 
between solutions of the full system

x´ = f(x, y, t, ε),  εy´ = g(x, y, t, ε)

and the degenerate system

x´ = f(x, y, t, 0), 0 = g(x, y, t, 0),

where f is an n–vector and g is an m–vector [25]. They assumed that the degenerate 
system has a C1[a, b] solution x = ϕ(t), y = ψ(t) and that f, g are also of class C1[a, b] in 
a neighborhood of ϕ(t), ψ(t) for t in [a, b] and ε ≥ 0 sufficiently small. The essential 
hypothesis is that the eigenvalues of the Jacobian matrix of g are all strictly negative. 
Under these conditions the full system has a unique solution with initial values x(a) = 
ζ, y(a) = η that exists on [a, b], provided that ε is sufficiently small and ζ, η are suffi-
ciently close to ϕ(a), ψ(a) respectively. Moreover, this solution converges to the solution 
of the degenerate system as ε tends to zero and its initial values converge to those of 
the solution of the degenerate system. If x(a, ε) = ϕ(a) but y(a, ε) is a constant that is 
different from but close to ψ(a), then the convergence is uniform on [c, b] for any c > a. 
With a slight strengthening of the Jacobian condition, the y of the solution is approxi-
mately given by the solution of the boundary layer equation

εY´ = g(ϕ(a),Y, a, 0),  Y(a) = η

and the width of the boundary layer can be estimated. In joint work with his former 
student L. Flatto [26], Levinson dealt with the case in which f and g are periodic in t 
with a period independent of ε. Subsequent developments of the theory outlined here are 
discussed in R. E. O’Malley’s 1991 book [27].
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Christopher K. R. T. Jones, in a letter to the editors of the Selected Papers of Norman 
Levinson, states:

like Fenichel...I do see this modern geometric theory as the natural 

offspring of the classical work of Levinson and others on this topic. The 

kind of estimates they get for solutions that jump between fast and slow 

segments—as seen, say, in Levinson’s paper [23]—find a natural expres-

sion in the geometric theory.

In a somewhat different direction, Coddington and Levinson [29] studied the existence, 
uniqueness, and limit behavior of the two-point boundary value problem

εy´´ + f(x, y)y´ + g(x, y) = 0,  y(0) = a,  y(1) = b,

where ε > 0 is small and a, b are arbitrary real numbers. A corresponding degenerate 
problem is

f(x, u)u´ + g(x, u) = 0,   g(1) = b.

Here the primes denote differentiation with respect to x. They assumed that the degen-
erate problem has a unique solution u(x) on [0, 1] with u(0) > a, if f and g are smooth 
in a suitable neighborhood of u(x) and if f(x, y) is positive and bounded away from zero. 
They showed that for sufficiently small ε > 0, the solution y(x, ε) of the full problem is 
unique and converges uniformly to u(x) as ε tends to zero on any subinterval [c, 1] with c 
> 0. It is known that this result is no longer true if f(x, y)y´ + g(x, y) is replaced by F(x, y, 
y´, ε) without further assumptions. Levinson, together with his former student S. Haber 
[30], derived appropriate conditions on F. These papers inspired a great deal of subse-
quent work, which was summarized in O’Malley’s book [27].

In addition to his work on singular perturbation problems for ordinary differen-
tial equations, Levinson wrote a groundbreaking paper [31] on a singular perturba-
tion of  the Dirichlet problem for the linear elliptic partial differential equation

εΔu + A(x, y)ux + B(x, y)uy + C(x, y)u = D(x, y)

in an open bounded connected region R of  the plane whose boundary G consists of  
a finite number of  simple closed curves. The given functions A, B, C, D are assumed 
to be sufficiently smooth in a connected open region S that contains R + G. For the 
Dirichlet problem, a smooth boundary function h is given on G. In order to state 
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his result, Levinson defined a regular quadrilateral Q in R + G as a closed simply 
connected region bounded by two characteristics of  the degenerate first-order equa-
tion

A(x, y)ux + B(x, y)uy + C(x, y)u = D(x, y)

and two sub-arcs G1 and G2 of G. For simplicity assume that A2 + B2 > 0 so that the 
vector field contains no singular points and S contains no limit cycles. It is further 
assumed that the characteristics intersect the arcs G1 and G2 transversely. The Dirichlet 
problem for the full equation has a solution u(x, y, ε), which is uniformly bounded in R + 
G for all sufficiently small ε. In Q this solution has the representation

u(x, y, ε) = U(x, y) + z(x, y, ε) + w(x, y, ε).

Here U is the solution of the degenerate equation with boundary values h on G1: It is the 
main term in the representation of u, except in a thin layer near G2 (the boundary layer) 
where the term z(x, y, ε) dominates. The construction of the boundary layer term z essen-
tially follows a formal procedure that is standard in the theory of singularly perturbed 
ordinary differential equations. In the boundary layer

 
g = 0 on G2, g > 0 in Q off G2, and g, k are smooth functions that are obtained by solving 
certain differential equations. There exists a δ > 0 such that

outside the boundary layer. Finally, it is shown that the error term w = O(√ε) and that 
the width of the boundary layer along G2 is O(ε).

Levinson’s work was the source of a great deal of further research. For example, S. 
Kamenomostskaya (Kamin) and Levinson’s former student V. Mizel extended his results 
to the case in which the transversality condition is violated; another former student, D. 
G. Aronson, extended his results to linear parabolic equations; and his work on singular 
perturbation problems for partial differential equations was the basis of many subsequent 
treatments, as shown in [32], [33], and [34]. The work of Levinson on singular perturba-
tions of elliptic partial differential equations also led to the development of a large body 

z x , y,ε( )= k x , y( )exp
−g x , y( )
ε

⎛
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⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

z = 0 exp −δ
ε
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟



15

NORMAN LEVINSON

of probabilistic research on related problems, which was summarized in M. I. Freidlin’s 
lecture notes [35].

In addition to the work outlined above, Levinson also studied eigenvalue problems for 
semi-linear elliptic equations, and he addressed the Dirichlet problem for the equation 
Δu + f(x, y, u) = 0 [36]. His approach to these problems was based on the direct method 
of the calculus of variations and avoided the use of the maximum principle. Thus his 
approach can be extended to higher-order equations, but this does not seem to have 
been done; subsequent developments have generally been based on nonlinear functional 
analysis. He also derived some useful one-sided inequalities for the solutions of second-
order elliptic equations.

Levinson made a number of noteworthy contributions to the theory of nonlinear 
Volterra integral equations, and his results led to subsequent work by his former student 
J. A. Nohel as well as by Nohel’s students and collaborators. Recent developments along 
these lines were surveyed in the book of G. Gripenberg, S.-O. London, and O. Staffans 
[37].

In his remarks on Levinson’s contributions to stochastic analysis, Mark Pinsky wrote: 
“As a classical analyst par excellence Levinson was in a strong position to bring new light 
to various questions in probability theory and stochastic processes” [38]. An early essay 
in this direction was Levinson’s work on Wiener’s theory of prediction and filtering. In 
the introduction to his paper, Levinson wrote: “[A] method will be presented for deter-
mining quantitatively the extent to which message and noise can be separated. Also will 
be given a method of designing a filter to carry out this separation. The close of this 
article will consider the problem of filtering and prediction simultaneously. The root-
mean-square error approach used here is an approximation to and a simplification of the 
transcendental case developed by N. Wiener”[39].

In two papers, [40] and [41], Levinson attacked the problem of the limiting behavior 
of classical and age-dependent Galton-Watson branching processes. In particular, the 
question of interest was the occurrence or nonoccurrence of process extinction. This 
work has had far-reaching influence in the field, as documented in the book of T. E. 
Harris[42].

In their monumental paper [43], Levinson and H. P. McKean, Jr., studied the rela-
tionship between the past and the future of a one-dimensional stationary Gaussian 
process x of mean 0, with special attention to the degree of dependence on the past as 
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reflected in the projection of x(t) : t ≥ 0 upon x(t) : t ≤ 0. Although the subject was prob-
abilistic, the paper was a tour de force in classical analysis. Its results figured prominently 
in further work of McKean with H. Dym. In particular, their book Gaussian Processes, 
Function Theory, and the Inverse Spectral Problem was “dedicated to the memory of 
Norman Levinson, who got us started in this business.”

In its simplest form the prime number theorem states that

where π(x) is equal to the number of primes that are less than or equal to x. This theorem 
was conjectured by Gauss and Legendre before 1800, but it was not until 1896 that 
Hadamard and de la Vallée Poussin independently proved it. Their proofs were not 
elementary in that they involved complex variable methods. In a 1921 lecture in Copen-
hagen, G. H. Hardy stated: 

No elementary proof of the prime number theorem is known, and one 

may ask whether it is reasonable to expect one. A proof…not fundamen-

tally dependent on the theory of functions seems to me extraordinarily 

unlikely.

Nevertheless, in 1948 Paul Erdös and Alte Selberg independently published elementary 
proofs based on simple properties of the logarithm function. Note that an elementary 
proof was not necessarily an easy one. Indeed the proofs of Erdös and Selberg were very 
difficult. In 1969 Levinson published “A Motivated Account of an Elementary Proof 
of the Prime Number Theorem” in the American Mathematical Monthly [44], based on 
Selberg’s approach. This paper was awarded the American Mathematical Association’s 
1971 Chauvenet Prize for outstanding exposition.

The Riemann hypothesis has to do essentially with the problem of estimating the error in 
the prime number theorem approximation. Riemann reduced the problem to finding the 
roots of the complex zeta function, in particular conjecturing that all of these roots lie 
on the vertical line σ = 1/2 in the complex plane. Hardy was apparently the first to prove 
that infinitely many of the zeros lie on this critical line, and many mathematicians tried 
to improve on this result without making significant progress. But in 1974, while already 
suffering from the brain tumor that would ultimately kill him, Levinson published an 
absolutely astounding paper [45], “More than One Third of the Zeros of the Riemann 

π x( )∼ x
ln x( )
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Zeta-Function are on σ = 1/2.” His 
methods were classical, and the proof 
required all of his formidable powers as 
an analyst. Brian Conrey pointed out in 
[46] that Levinson’s proof also revealed 
the fact that the 1/3 of the zeros on the 
critical line are simple. “In particular,” 
Conrey said, “this was the first proof that 
infinitely many of the nontrivial zeros 
of the zeta-function are simple.” Conrey 
[47] refined Levinson’s approach to show 
that at least 40 percent of the zeros are 
simple and on the critical line. Levinson 
had suggested a method for significantly 
improving his result, but he did not live 
long enough to pursue it and no one else 
has so far been able to carry it through.

In 1972 Levinson published “Ω-The-
orems for the Riemann Zeta-Function” 
[48]. According to Conrey [49] “Omega 
theorems give lower bounds for how large 
the extreme values of a given function 
can be. Levinson proved the best omega 
theorems, at the time, for the zeta-
function in the strip 1/2 ≤ σ ≤1.” This 
paper of Levinson stimulated further 
work in the area, particularly by H. L. Montgomery [50] and K. Ramachandra [51], who 
sharpened Levinson’s omega results on the critical line. 

Levinson was extremely prolific. In addition to the research outlined above, he wrote 
on many other topics, including control theory and linear programming. In all he had 
124 publications, among which were three books. He had 34 Ph.D. students and, 
according to the Mathematical Genealogy Project, at least 462 descendants. His honors 
included a National Research Council Fellowship (1935–37), a Guggenheim Fellowship 
(1948–1949), the Bôcher Prize of the American Mathematical Society (1954), service 
as vice-president of the American Mathematical Society (1965), election to the National 

Levinson, right, with Earl Coddington at the  
International Congress of Mathematicians, 
Moscow, 1966. 
(Photo courtesey MIT Museum.)
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Academy of Sciences (1967), and the 
Chauvenet Prize of the Mathematical 
Association of America (1971). Levinson 
was head of the MIT Mathematics 
Department from 1968 to 1971, and in 
that latter year he was appointed Institute 
Professor.

Together with W. T. Martin, C. C. Lin, 
and I. M. Singer, Levinson played a 
leading role in transforming the MIT 
Mathematics Department from a service 
department to the extremely strong 
research entity that it is today. He had 
a keen eye for mathematical talent and 
very catholic taste. In 1968, when Martin 
retired as head of the department, there 
was a widening gap between the pure 
and applied mathematicians; the applied 
people wanted to split off and form 
a separate department. But the MIT 

administration was unwilling to allow such a split. The solution was the formation of 
an applied group and a pure group, each with its own standards for appointment and 
promotion. There would also be a Departmental Council, composed of some members 
from each group along with the department chairman and others, which would review 
the recommendations of the two groups and transmit the agreed results to the Institute 
Science Council for final approval. In order to make this system workable it was decided 
to limit the term of the Department Head to five years (Martin had served for 21 years) 
and have the leadership alternate between the two groups. “So who would be the first 
chairman under the new arrangement?” said A. P. Mattuck. “Levinson had credentials in 
both camps. [He] had both status and broad appeal, so he was the natural choice. [He] 
served for three years.”[52] 

Aside from their importance to the scientific aspects of life in the MIT Mathematics 
Department, the Levinsons were an integral part of its social fabric. Among other things, 
they ministered to Norbert Wiener during his frequent bouts of depression, helped 

Undated photo. 
(Photo courtesy MIT Museum.)
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improve life for Felix Browder during his time in the Army, and provided important 
support for John Nash and his wife during his prolonged illness. Fagi, who was charac-
terized as the “den mother” of the department, died in 2009. Norman died on October 
10, 1975.

On December 17, 1975, the MIT faculty voted the following memorial resolution:

Norman Levinson was the heart of mathematics at MIT, a man who 

combined creative intellect of the highest order with human compas-

sion and unremitting devotion to science and to excellence in its pursuit. 

Throughout the mathematical world the name MIT and the name 

Norman Levinson have been synonymous for many years. For those of us 

who were fortunate to have him as a friend and colleague, this is entirely 

fitting, because we are aware that, with extraordinary effectiveness and 

caring, he devoted 46 years of his life to mathematics and this institute.

[53]

SOURCES
Except where explicitly noted, most of the biographical information in this article was adapted 
from the biography of Norman Levinson at www-history.mcs.st-and.ac.uk/Biographies/Levinson.
html, written by J. J. O’Connor and E. F. Robertson. Additional biographical information and 
some of the scientific information came from Recountings: Conversations with MIT Mathemati-
cians, edited by Joel Segal. The indispensable resource for the biographical and scientific aspects 
of Levinson’s career is the two-volume set Selected Papers of Norman Levinson edited by John 
A. Nohel and David H. Sattinger. I am greatly indebted to Peter Duren, Linda Sons, Andrew 
Odlyzko, and Juan Luis Vazquez for their help.
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