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It is of interest that Mackey’s work on representation theory highlights the intimate rela-
tionship of representation theory and ergodic theory—that is, the theory of groups acting 
as transformation groups on a measure space. Such actions give rise naturally to unitary 
representations, and in the course of analysis of unitary representations of a group, 
ergodic actions arise in natural way.

In his theory of virtual groups, which Mackey developed in the 1960s, he shed new 
light on the relationship between representation theory and ergodic theory. The impact 
of these virtual groups, now more commonly identified as equivalence classes of ergodic 
measured groupoids, has been substantial. Finally, Mackey had a lifelong interest in the 

George W. Mackey made fundamental contributions to 
ergodic theory and to the theory of unitary representa-
tions of locally compact groups. In the classical special 
case of finite groups, representation theory is the study 
of how such groups can be represented as consisting of 
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While many aspects of the representation theory for 
compact and abelian groups had been developed previ-
ously, and some examples of representations of non- 
compact, non-abelian groups had been published, Mackey laid out for the first time a 
general theory of unitary representations, a way of constructing representations, and a 
way of determining all the representations of many groups, and he provided an overall 
vision of the subject. These achievements laid the groundwork for the numerous investi-
gators who have followed in his footsteps. 
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mathematical foundations of quantum mechanics 
and of theoretical physics generally, and he wrote 
extensively on these topics. A key connection here 
is that any group of symmetries of a quantum 
system will give rise to a unitary (projective) repre-
sentation of that group as unitary operators on the 
Hilbert space associated with the system.

Mackey was born in St. Louis, Missouri, to 
William Sturges Mackey—at the time a bond salesman working for local firms—and 
Dorothy Frances Allison Mackey. George became the eldest of three children, with a 
sister Madge born in 1917 and a brother Bill born in 1921. In 1925, Mackey, Sr., had 
an attractive job offer in Hollywood, Florida, and he moved the family there. When this 
business opportunity did not pan out as expected, and after the family survived the 1926 
hurricane that wreaked considerable damage on Hollywood and other Florida commu-
nities, Mr. Mackey took advantage of another business opportunity, this time in Texas, 
and moved the family permanently to Houston. He worked in various lines of business 
there but primarily as a petroleum broker. The family moved frequently in Houston as 
the fortunes of the family ebbed and flowed, and George and his siblings were educated 
in the Houston public schools.

George showed an early fascination with mathematics and science. At age six, he contem-
plated a rectangular garden from an overlooking hotel room, and noted that the length 
of the diagonal was less than the sum of the two adjoining sides. He became interested 
in ornithology, which led to his amassing of bird pictures. He described himself as an 
abstract bird watcher, by which he meant looking at these pictures rather than at live 
birds. George was an avid reader, especially of books about science, so much so that his 
parents worried that his extensive reading might harm his eyes.

A natural autodidact, there were times during George’s childhood when he did not 
attend school at all. For instance, when the family arrived in Hollywood, Florida, it 
was several weeks after the school term had begun, and the parents decided to keep the 
children out of school for the year, in part to protect George’s eyes. He spent much of 
that year reading from The Book of Knowledge at a relative’s house. In addition, on at least 
one or two later occasions, George suffered an extensive period of illness when he could 
not do much more than lie in bed and think. His education evidently did not suffer from 
these intervals away from school, and they even may have helped him develop a taste for 
deep contemplation.

A natural autodidact, there 
were times during George’s 
childhood when he did not 
attend school at all. 
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Although not at all athletic and little 
interested in sports as an adult, George 
was for a time an avid baseball fan of 
his home team, the St. Louis Cardinals. 
His father, eager for him to be more of 
an athlete, tried to bribe him to take up 
golf as a boy, but to no avail. George later 
commented that he had much preferred 
the satisfaction of making money by 
selling magazines, as opposed to prac-
ticing putting. He also developed a 
significant interest in magic—an interest 
that extended into adulthood; he often 
performed magic tricks at his daughter’s 
birthday parties.

When George was about 15, his father 
started chasing a new business oppor-
tunity, which involved extracting iodine 
from seaweed, and he tried to secure 
George’s help by suggesting that he 
study a little chemistry. George quickly 
developed an intense interest in the 
subject, even before taking any high-
school science courses, and he pursued 
this interest—practically pushing all other 
subjects aside—through independent 
reading; he also set up his own home 
chemistry laboratory. In 1934, when he 

entered the Rice Institute (later renamed Rice University), George’s stated aim was to 
study chemical engineering—which he saw as a compromise between his love for pure 
science and his father’s wish for him to become a businessman. But as his interest in 
mathematics further developed and deepened during his undergraduate years, George 
liberated himself from family career expectations and switched his major to physics, also 
taking many courses in mathematics. Although the practice did not formally exist at the 

Mackey as a teenager in his home chemistry 
lab.
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time, he effectively completed a double major—in physics and mathematics—and in 
fact, with his independent reading and study in chemistry, he might even be described as 
having had a triple major.

Although he was not a mathematics major, the mathematics faculty at Rice were well 
aware of Mackey’s talent in their field; and they encouraged him to take the William 
Lowell Putnam Examination, a mathematics competition for undergraduates in the 
United States and Canada, the first time it was offered (during the 1937–38 academic 
year). The mathematics faculty’s judgment of Mackey’s ability was validated when he 
achieved one of the top five scores among all those in the two countries who had taken 
the test.

As Mackey looked to his future beyond Rice, he decided to become a theoretical phys-
icist who would probe the connections between physics and mathematics. To achieve 
this goal, he conceived the strategy of first obtaining a Ph.D. in mathematics and then 
proceeding to attack fundamental problems in physics. Toward that end, the Rice math-
ematics faculty encouraged him to apply to Harvard University for graduate study in 
mathematics, pointing out that John H. Van Vleck, an eminent theoretical physicist 
who held a joint appointment at Harvard in physics and mathematics, was someone 
who might be relevant to Mackey’s goals. Thus Mackey applied to Harvard—also to the 
University of California, Berkeley—for graduate study in mathematics, and both institu-
tions invited him to enroll.

Harvard initially did not offer financial aid, while Berkeley came through with a teaching 
assistantship, which Mackey quickly accepted. But when Harvard learned of his Putnam 
score, it added significant financial aid, including full tuition. This state of affairs placed 
Mackey in a difficult position, and he wrote to Griffith Evans, the mathematics chair 
at Berkeley (who coincidentally had been long-time mathematics chair at Rice before 
leaving for Berkeley in 1934). Mackey asked Evans if he could be released from his 
acceptance at Berkeley, and Evans complied. As an added note, the Harvard mathematics 
department began that year its long tradition of reviewing the top five Putnam finishers 
and selecting one of them for a full scholarship. Mackey was not selected for this honor, 
but rather it went that year to Irving Kaplansky.

So in the fall of 1938, Mackey entered Harvard for doctoral study in mathematics. In 
his first year he took a course from Marshall Stone and did very well in it. This was his 
first exposure to Stone, but the decisive interaction came when Mackey discovered his 
teacher’s magisterial Linear Transformations in Hilbert Space and their Applications to 
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Analysis (Stone 1932), which convinced him that he must study under the writer of this 
magnificent book. In 1939, after Mackey’s first year of graduate work, he asked Stone 
rather than Van Vleck to be his dissertation supervisor, and Stone accepted.

In 1942 Mackey completed his dissertation, The Subspaces of the Conjugate of an 
Abstract Linear Space. In this work he explored the different locally convex topologies 
that an infinite-dimensional vector space can carry. The most significant result to emerge 
can be stated as follows:

Consider two (say, real) vector spaces V and W, which are in perfect duality by a pairing

× →V W
 

so that each may be viewed as linear functionals on the other. It was obvious that there 
is a weakest (smallest) locally convex topology on V (or W) such that the linear func-
tionals coming from W (or V) are exactly the continuous ones, called the weak topology. 
What Mackey proved was the non-obvious fact that there is also a unique strongest 
(largest) locally convex topology such that the linear functionals coming from W are the 
continuous ones. As Mackey showed, this is the topology of convergence of elements 
of V, now viewed as linear functionals on weakly compact convex subsets of W. All 
locally convex topologies on V, for which the linear functionals from W are exactly the 
continuous ones, lie between these two (weakest and strongest) topologies (Mackey 1943 
and 1946). This topology of uniform convergence on weakly compact convex sets has 
become universally known as the Mackey topology. Stone arranged for Mackey to be 
awarded a Sheldon traveling fellowship during 1941–42, his last year of graduate study. 
This fellowship is ordinarily granted for foreign travel, but owing to the war, its appli-
cation to domestic travel was allowed. Mackey used it to spend the first semester at the 
California Institute of Technology and the second at the Institute for Advanced Study in 
Princeton, New Jersey, where he met many mathematicians and forged lifelong friend-
ships. Mackey’s first postdoctoral position was as an instructor at the Illinois Institute 
of Technology for the 1942–43 academic year. He then was engaged in war-related 
research—for what was later to become the U.S. Air Force—at Columbia University and 
in High Wycombe, England. Following this wartime service, he returned to Harvard as 
an assistant professor (in 1946). Mackey was subsequently promoted up the ladder and 
was appointed full professor in 1956; in 1969, he became the Landon T. Clay Professor 
of Mathematics and Theoretical Science.
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As noted above, Mackey’s original intention was to become a theoretical physicist, but as 
he delved further into mathematics research he dropped that idea, having become, as he 
put it, seduced by mathematics. Of course, he retained a lifelong interest in theoretical 
physics, and soon after his initial work he turned his attention to the theorem of Stone 
(Stone 1930) and John von Neumann (von Neumann 1931). This theorem asserts that 
a family of 2n self-adjoint operators p(i) and q(i) on a Hilbert space satisfying the quan-
tum-mechanical commutation relations, 

δ( ) ( )( )  =p k q j i j k I, ,

and with no common closed invariant subspaces, is unique. Mackey realized that it was 
really a theorem about a pair of continuous unitary representations—one U of an abelian 
locally group A and the other V of its dual group Â—that satisfied

( ) ( ) ( ) ( ) ( )=U s V t s t V t U s, ,

where ( )s t, is the usual pairing of the group and its dual. He showed (Mackey 1949a) 
that such a pair is unique if the group and its dual jointly leave no closed subspace 
invariant, and in general any pair is isomorphic to a direct sum of copies of the unique 
irreducible pair. When G is Euclidean n-space, this result becomes the classic theorem 
about the quantum-mechanical commutation relations. Mackey then also saw imme-
diately that there was a version for non-abelian locally compact groups, known as his 
imprimitivity theorem, which played a fundamental role in his subsequent work.

This imprimitivity theorem (Mackey 1949b) states that a unitary representation U of 
a group G is induced by a unitary representation V of a closed subgroup H of G if and 
only if there is a projection valued measure on the measure space µ( )G H/ , —with values 
projections on the same Hilbert space as U—that is covariant with respect to U in the 
natural sense. Here μ is a quasi-invariant measure on G/H. Moreover, U and V uniquely 
determine each other up to unitary equivalence. Mackey’s theorem above on unicity 
of pairs of representations of an abelian group A and its dual group Â is a special case 
obtained by applying the imprimitivity theorem to a generalized Heisenberg group built 
from A and Â.

At the same time, Mackey initiated a systematic study of unitary representations of 
general locally compact second-countable groups (note that all groups will be assumed to 
be second-countable without further mention), the work for which he is most famous. 
Von Neumann had developed a theory of direct integral decompositions of operator 
algebras in the 1930s as an analog of direct sum decompositions for finite-dimensional 
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algebras. But he did not publish it until F. I. Mautner persuaded him to do so in 1948. 
Adapted by Mackey to representation theory, direct integral theory became an important 
tool that Mackey used and further developed. For representations of finite groups, 
induced representations—wherein one induces a representation of a subgroup H of G up 
to the group G—is an absolutely essential tool.

In a series of papers (Mackey 1951, 1952, and 1953), Mackey systematically studied 
the process of induction of a unitary representation of a closed subgroup H of a locally 
compact group G to form the induced representation of G. When the coset space G/H 
has a G-invariant measure, the definition is straightforward, but when it has only a 
quasi-invariant measure, some extra work is needed. Mackey developed analogs for 
locally compact groups of many of the main theorems about induced representations of 
finite groups. (The process of induction had appeared in some special cases a year or two 
earlier in the work of I. M. Gelfand and his collaborators on unitary representations of 
the classical Lie groups.)

These results provided the foundation for what was to become known as the Mackey 
little group method—or, as some have called it, the Mackey machine—for calculating 
the irreducible unitary representations of a group based on information about its 
subgroups. But before this program could get underway, Mackey had to put in place 
some building blocks, or preliminaries—in particular, he set forth basic facts about a 
Borel structure (a set together with a sigma-field of subsets) in Mackey 1957b. He iden-
tified two kinds of very well-behaved types of Borel structures, which he called standard 
and analytic, based on some deep theorems in descriptive set theory of the Polish school. 
An equivalence relation on a Borel space leads to a quotient space with its own Borel 
structure. If the original space is well behaved, there is a kind of dichotomy for the 
quotient space; it can be very nice—one of the two well-behaved types above—or if 
not, it is quite pathological. If the former holds, then the equivalence relation is said to 
be smooth. The set of concrete irreducible unitary representations of a group G can be 
given a natural well-behaved Borel structure, and then the equivalence relation of unitary 
equivalence yields the quotient space—that is, the set of equivalence classes of irreducible 
unitary representations—which he termed the dual space Ĝ of G. If the equivalence 
relation is well behaved, Ĝ is a well-behaved space, and Mackey said then that G had a 
smooth dual. This was a crucial concept in the program.

Also, by adapting von Neumann’s type theory for operator algebras, Mackey adapted this 
notion and introduced as well the notion of a type I group, by which he meant that all 
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its representations were type I—or, equivalently, that all of its primary representations 
were multiples of an irreducible representation. On the basis of his work in classifying 
irreducible representations of a group—e.g., calculating Ĝ—Mackey observed that the 
property of a group G having a smooth dual seemed to be correlated with the absence 
of non-type I representations of G. Mackey then made the bold conjecture that a locally 
compact group G had a smooth dual if and only if it is type I. It was not too long before 
James Glimm provided a proof of this conjecture (Glimm 1961).

Some facts about actions of locally compact groups on Borel spaces and measure spaces 
constituted another building block for the Mackey machine. A group action is ergodic 
with respect to a quasi-invariant measure—the concept of ergodicity played a central 
role in Mackey’s work over decades—if the only fixed points in the measure algebra are 
0 and 1. An important observation is that if the equivalence relation induced on X by 
the action of G is smooth, then any ergodic measure is concentrated on an orbit of G; 
moreover, up to null sets, the action is transitive. Concerning point realizations of actions 
of a group, suppose that G acts as a continuous transformation group on the measure 
algebra M(X,μ) of a measure space where X is a well-behaved Borel space. Then it is 
natural to ask if one can modify X by μ-null sets if necessary and show that this action 
comes from a Borel action of G, on the underlying space X, that leaves the measure 
quasi-invariant. In an associated paper (Mackey 1962), Mackey showed that the answer 
was affirmative, thereby extending an earlier result of von Neumann’s for actions of the 
real line.

Another preliminary was to deal with what one would call projective unitary represen-
tations of a group G, which are continuous homomorphisms from G to the projective 
unitary group of a Hilbert space. Such projective representations not only arise naturally 
in the foundations of quantum mechanics; it also became clear that when one started to 
analyze ordinary representations, this led naturally to projective representations. By using 
a lifting theorem from the theory of Borel spaces, Mackey showed that a projective repre-
sentation could be thought of as a Borel map U from G to the unitary group satisfying

( ) ( ) ( ) ( )=U s U t A s t U st,
where A is a Borel function from G × G to the circle group T that satisfies a certain 
cocycle identity. For finite groups, it was clear that any projective representation of a 
group G could be lifted to an ordinary representation of a central extension of G by a 
cyclic group. In the locally compact case, one would like to have the same result, but 
with a central extension of G by the circle group T. Mackey, by a very clever use of 
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Weil’s theorem on the converse to Haar measure, showed how to construct this central 
extension. He also began an exploration of some aspects of the cohomology theory that 
lay in the background (Mackey 1957a).

In Mackey 1958, his little group method—the Mackey machine—starts with a group G 
for which one wants to compute Ĝ, and it is assumed that N is a closed normal subgroup 
that has a smooth dual (and hence is now known to be type I). If it is also assumed that 
N̂  is known, then G (or really, G/N) acts on N̂  as a Borel transformation group via 
automorphisms of N. Any irreducible representation U of G yields upon restriction to 
N a direct integral decomposition into multiples of an irreducible representation with 
respect to a measure μ on N̂ , which Mackey showed was ergodic. Then if the quotient 
space of N̂  by this action is smooth, any ergodic measure is transitive, and is carried on 
some orbit of G on N̂ . Hence the representation U has a transitive system of imprimi-
tivity based on G/H, where H is the isotropy group of a point on the orbit. Further, U is 
induced by a unique irreducible representation of H, whose restriction to N is a multiple 
of V. These results can be classified in terms of irreducible representations or projective 
representations of H/N, which is called the “little group.” This work of Mackey built in 
part on Eugene Wigner’s analysis (Wigner 1939) of the special case of unitary representa-
tions of the inhomogeneous Lorentz group.

Mackey’s little group method was an enormously effective tool for analyzing represen-
tations of many different groups. It has been used to good effect by many workers and 
extended in different directions. For example, after reading Andre Weil’s paper on meta-
plectic representations (Weil 1964), Mackey wrote a lengthy (2,500-word) and insightful 
review of the paper (Mackey 1965); he used the review to show how Weil’s construction 
fitted into his little group method.

In the summer of 1955, Mackey was an invited visiting professor at the University of 
Chicago, where he gave a course that explained the theory of group representations  he 
was developing. J. M. G. Fell and D. B. Lowenslager’s notes from the course circulated 
informally for years, and generations of students (including the author) learned Mackey’s 
theory from these famous notes (Fell and Lowenslager 1955). In 1976, Mackey finally 
agreed to publish an edited version together with an expository article summarizing the 
field’s progress during the intervening years (Mackey 1976).

Well into his 40s, George led a bachelor’s life, living in a small and sparsely furnished 
apartment. Totally devoted to his mathematics, he had a regular pattern of going to his 
office and working. He settled early on a dress style and never varied from it. He was, for 
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instance, reluctant to take off his jacket for any occasion—
even at a picnic—compromising only to switch from tweed 
to a lighter-weight fabric such as seersucker when the season 
demanded. George was identifiable by his clipboard, which 
he always carried with him so that he could sit down almost 
anywhere to do mathematics. And he was known to keep 
very detailed records in notebooks of every penny he spent 
and what it was for.

In conversations George was always completely honest and 
straightforward, which some found off-putting, but he was 
committed to a principle of integrity and had a strong sense 
of ethics—though he never wished to offend and so often 
had to carefully consider how to phrase his comments. He 
would not hesitate, however, to express his opinions on such 
things as bureaucratic inefficiency—for example, that the 

federal government was wasting its money on research grants, given that mathematicians 
would certainly spend their summers doing mathematics whether they received the extra 
two months of summer salary or not. He also was concerned that such research support 
would over time lead to governmental control of the research agenda in universities. 
While not many people would agree with the former opinion, many would find wisdom 
in the latter. As his daughter Ann put it her eulogy and its written version in Doran and 
Ramsey 2007, he was “notoriously eccentric and proud of it.” He also described himself 
as “a gregarious loner.”

In December 1960, George surprised many of his friends and colleagues by getting 
married. The bride was Alice Willard, a native of Groton, Connecticut, and a Wellesley 
graduate (class of 1941). George and Alice, who worked as a buyer for the Jordan Marsh 
department store in Boston, had dated on and off for some 14 years. Their marriage was 
a happy one, with deep love and respect on both sides, and produced one daughter, Ann 
Sturges Mackey. George persisted in many of his bachelor habits, while also adapting 
them in order to become a dutiful husband and father.

For example, he carried his famous clipboard on vacations with his family and might be 
seen sitting on a park bench doing mathematics while Alice and Ann were off sightseeing 
or shopping. “I loved my father dearly,” said Ann. “Although he was fond of asserting to 
anyone who would listen that he’d never wanted a family, it was clear to everyone that 

George with his clipboard.
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once he stumbled into marriage and fatherhood, he 
relished and cherished [them], even as he struggled 
to adapt to the compromises [they] asked of him.”

In 1960 Mackey was invited to give the Collo-
quium Lectures at the 1961 Annual Summer 
Meeting of the American Mathematical Society 
(AMS). He used this prestigious lecture series to 
summarize his theory of unitary representations 
and his ergodic theory. In addition to the expo-
sition, Mackey laid out for the first time his new 
concept of a virtual group, which he saw as a 
simple and elegant way to visualize ergodic theory 
and its connections with representation theory. The 
concept can also be seen as a derivative and culmi-
nation of his famous imprimitivity theorem.

He began by observing that a Borel group action of a group G on a measure space (Y,μ) 
defines a groupoid—a set with a partially defined multiplication where inverses exist. 
The groupoid as a set is G × Y and is given the product Borel structure and the product 
measure μ on Y with Haar measure on G. If the measure μ were ergodic, then Mackey 
would call the construction an ergodic measured groupoid. He also noted his realization 
that different objects of this type needed to be grouped together under a notion he called 
similarity, and he defined a virtual group to be an equivalence class under similarity of 
ergodic measure groupoids. In the case of a groupoid coming from a transitive action 
of G on a coset space G/H of itself, the similarity notion makes the ergodic measured 
groupoid G×(G/H) similar to the group H (with Haar measure), which puts them in the 
same equivalence class. Hence in this case the transitive measured groupoid is literally a 
subgroup of G, and Mackey’s point here was that it would be very productive to look at 
a general ergodic action of G as a kind of generalized (or virtual) subgroup of G via the 
language of groupoids and virtual groups.

Then Mackey began a systematic discourse on the representations of virtual groups, 
induced representation, and related concepts. He pointed out, for example, that the 
imprimitivity theorem remains true in the ergodic nontransitive case in that the irre-
ducible representation of G is now induced by an irreducible representation of a virtual 

George and daughter Ann in Zürich, 
ca. 1971.
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subgroup. A lengthy paper based on these AMS Colloquium Lectures appeared in 
Mackey 1963. He laid out his theory of virtual groups in more detail in a subsequent 
publication (Mackey 1966), and again in his invited lecture at the International Mathe-
matical Congress in 1970, with the written version appearing as Mackey 1971.

One particularly rich theme has emerged from the special case when the group action 
is free, in which case the groupoid is simply an equivalence relation. Mackey defined 
what one means by a measured ergodic equivalence relation. Isomorphisms of measured 
equivalence relations amount to orbit equivalence of the group actions, a notion that 
was somewhat foreign in ergodic theory at first but that has been of overriding impor-
tance in subsequent developments. In fact, in Mackey 1966 he foreshadowed some of 
the advances that would spring from his work. Mackey was perhaps a bit disappointed 
that his elegant notion and language of virtual groups did not catch on, but he would 
have been pleased to see that this work laid the foundation for and inspired subsequent 
efforts by many on groupoids and their applications in noncommutative geometry and 
topology.

As noted earlier in this memoir, Mackey maintained a lively and inquiring lifelong 
interest in mathematical physics, and especially in the basics of quantum theory, 
quantum field theory, and statistical mechanics. In Mackey 1957c, he explored the 
abstract relationship between quantum states and quantum observables, and he raised 
the question of whether some very general axioms about that relationship necessarily led 
to the classical von Neumann formulation. This exposition inspired Andrew Gleason to 
prove a strengthened version of Mackey’s results (Gleason 1957), which then enabled 
Mackey to formulate a general result that showed that the von Neumann formulation 
followed from a much weaker set of axioms. Also, Mackey’s work on the unicity of the 
Heisenberg commutation relations gave an indication why the uniqueness breaks down 
when the number of p(i)’s and q(i)’s is infinite (quantum field theory). Following his 
interests in quantum mechanics from many years earlier, Mackey wrote a book based 
on a course he gave at Harvard (Mackey 1963b) that explained the field’s mathematical 
foundations. Although he was clearly influenced by von Neumann and chose for his title 
the English translation of von Neumann’s classic book (1932) of three decades earlier, he 
offered his own inimitable and fascinating perspective.

This was the first of a series of books and essays that Mackey wrote of an integrative or 
historical nature about group representations, harmonic analysis, and their applications 
and significance for other areas of mathematics and for the mathematical foundations of 
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physics—especially quantum mechanics and statis-
tical mechanics. The theme of Norbert Wiener’s 
definition of chaos, or homogeneous chaos, was a 
favorite theme in Mackey’s writings, as were appli-
cations of group representations to number theory. 
Mackey was invited to be the George Eastman 
Visiting Professor at Oxford University for 
1966–67, and he, his wife Alice, and daughter Ann 
spent the year there, during which he gave a wide-
ranging series of lectures, subsequently publishing 
these lectures’ notes as Mackey 1978. Other publi-
cations of this nature include Mackey 1968, 1974, 
1980, and 1992. The 1992 book, a collection of a 
number of his integrative essays on mathematics 
and theoretical physics, is a showcase of his thoughtful and insightful writing on these 
topics.

Mackey was accorded many honors during his lifetime, including election to the 
National Academy of Sciences in 1962, the American Academy of Arts and Sciences, and 
the American Philosophical Society. As noted, he was appointed to the George Eastman 
Visiting Professorship at Oxford and was a prize holder of the Alexander Humboldt 
Foundation. One sign of the recognition of Mackey’s integrative publications was the 
awarding of the American Mathematical Society’s Leroy Steele Prize to him for his magis-
terial paper on ergodic theory and statistical mechanics (Mackey 1974). In 1982, he 
received a Distinguished Alumnus Award from Rice University. Mackey was frequently 
invited to visit mathematical centers around the world to give lectures, including in: 
Leningrad and Moscow (1962); Les Houches, France, the Tata Institute, Bombay, and 
ETH, Zürich (1970–71); the Institute for Advanced Study, Princeton, Jussieu/Université 
de Paris VI, and Max Planck Institute, Bonn (1985–86); and China (1990).

Let me close with some personal thoughts and recollections. I first met George in 1956, 
when I was entering my junior year at Harvard. He became my advisor and mentor 
there, not only during the rest of my undergraduate days but also when I continued as a 
graduate student. I learned how to be a mathematician from him, and I have valued his 
friendship, guidance, and encouragement ever since—for over 50 years. Many of my own 
accomplishments can be traced back to ideas and advice coming from George, who was a 
uniquely gifted and inspiring individual.

George in his office at Harvard, 1970s.
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Alice and George Mackey in Houston, 1991.

George visited the University of Cali-
fornia, Berkeley (where I have long been 
based) on several occasions, and two 
incidents stick in my mind that reflect 
his productivity as well as his modesty 
and warmth. One time, probably in the 
1960s or 70s, a group of us were walking 
to lunch and talking mathematics. In this 
discussion I described a certain relevant 
theorem (unfortunately, I cannot recall 
what it was), and George remarked to 
the effect, “That’s a very nice result. Who 
proved it?” My response was, “You proved 
it.” It is nice to have proved so many good 
theorems that you can forget a few.

The other incident—actually, a series of incidents—occurred in 1983–84, when I had 
arranged for George to visit at Berkeley’s Mathematical Sciences Research Institute for 
a year. The MSRI’s housing officer found him and Alice a beautiful rental house that 
belonged to Geoff Chew, a faculty member in physics, who was on sabbatical. The only 
problem was that it came with some animals—cats and a dog, which the tenants would 
have to take care of. But the Mackeys said this would be no problem. George actually 
arrived a month or two before Alice could come so that the house would not be vacant, 
with no one to look after the animals. George truly had his hands full as a result, and 
even after Alice arrived to take over housekeeping, they amassed many amusing tales to 
tell. When they returned to Cambridge after their year in the “wild west,” Alice wrote a 
fascinating and hilarious article for the Wellesley alumnae magazine about their travails 
with the Chew menagerie.

George died on March 15, 2006, from complications of pneumonia in Belmont, Massa-
chusetts, at the age of 90. He will be remembered and honored for his seminal contri-
butions to group representations, ergodic theory, and mathematical physics and for 
his fascinating expositions on these subjects. Additional material on his life and works 
contributed by colleagues, friends, and students can be found in Doran and Ramsey 
2007.
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