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GEORGE ABRAM MILLER
1863-1951

BY H. R. BRAHANA

EORGE ABRAM MILLER was born near Lynville, Pennsylvania, on
July 31, 1863, the year the National Academy of Sciences was
incorporated. He was elected to membership in the Academy in
1921. He published two papers in the first volume of the Proceedings
of the Academy in 1915; he contributed five or six papers to each
volume of the Proceedings for many years around the time of his
retirement in 1931; and his last two mathematical papers appeared
in Volume 32 of the Proceedings in 1946. He died at Urbana, Illinois,
on February 10, 1951.

Miller came into prominence in the mathematical world abruptly
in 1894-1895 when he completed the determination of the substi-
tution groups of degrees eight and nine. The groups of degree eight
had been listed in 1891 by Cayley, who at that time was referred
to as the greatest English mathematician since Newton. Cayley’s
list had been corrected by F. N. Cole, and Miller started his study
of groups after his association with Cole. Miller redetermined the
groups and brought the number to 200 including two groups that
his predecessors had missed. Camille Jordan, one of the foremost
French mathematicians and a specialist in the theory of groups,
had published in 1872 a list of the primitive groups of degree nine
- and Cole had given a list of all the groups of degree nine in 1893;
Miller determined the 258 groups of this degree, adding one group
to Jordan’s list and two to Cole’s. In the following year he published
his own list of 994 intransitive groups of degree ten. These lists
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have stood since that time. In 1900 the Academy of Sciences of
Cracow awarded him a prize for his work on the groups of degree
ten, a prize which had been standing since 1886. This was the first
award to an American for work in pure mathematics.

The mathematical world which Miller entered in 1894 was largely
a European world, and mathematics was just getting a foothold in
America. Although mathematics is an old subject and advanced
vigorously during the two preceding centuries, there had been no
participation by Americans in the advancement. The first notable
American contribution was a memoir on “Linear Associative Alge-
bras” by Benjamin Peirce of Harvard. This was read before the
National Academy of Sciences in Washington in 1870, although at
that time there was no organized mathematical group to which to
present it and no American mathematical periodical in which it
could be published. It was published later in the American Journal
of Mathematics. The Johns Hopkins University, established in 1846,
is considered to have started the first school of mathematics in this
country, headed by the English mathematician, J. J. Sylvester.
Harvard, Yale, and Princeton were offering the degree of Doctor of
Philosophy in mathematics, but Harvard Fellows were going to
Germany to study mathematics. Some returned to Harvard for their
degrees while others took their degrees abroad. Cole got his degree
at Harvard in 1886 after two years in Germany; Bocher got his
degree in 1891 at Gottingen after some years there as a Harvard
Fellow. Clark University, established in 1889, had Bolza, a German,
on its staff. The University of Chicago, established in 1893, had
E. H. Moore and two Europeans, Bolza and Maschke, in its mathe-
matics department; Moore had his degree from Yale and had spent
a year in Europe. The University of Michigan was offering the
doctor’s degree and had Cole and Ziwet on its staff. Ziwet also was
trained in Europe. Most of the colleges were offering mathematics
as far as the calculus; those that were going further depended largely
on men who had been trained in Europe. The American Journal of
Mathematics, established by Johns Hopkins in 1848 with Sylvester
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as editor, depended for the first few years on contributions by Euro-
peans. The Annals of Mathematics (1884) was edited by Ormond
Stone at the University of Virginia. The Bulletin of the New York
Mathematical Society (1891) was edited by Fiske, Jacoby, and Ziwet.
The New York Mathematical Society had 23 members in 18go;
Miller was elected to membership in 18g1. The Society changed its
name to the American Mathematical Society in 1894. Except in a
few institutions, mathematics libraries were non-existent; for ex-
ample, the mathematics books at the University of Illinois occupied
one fifteen-foot shelf in 1893.

Miller had no considerable contact with mathematicians or with
their works before he went as Instructor to the University of Michi-
gan in 1893, and he had behind him no family tradition of erudition
or scholarship to spur him on. He began teaching school at seventeen
to earn money to permit him to continue his education. He attended
Franklin and Marshall Academy, a subdivision of the College at
Lancaster, in 1882-1883. He attended Muhlenburg College from
January, 1884, to 1887, receiving the degree of Bachelor of Arts
with honorable mention, and ranked third in his class of twelve.
Muhlenburg granted him the degree of Master of Arts in 18go0.
The catalogue of Muhlenburg states that the recipient of the degree
should be of good moral character, should have been a Bachelor
of Arts for three years, and should have been engaged in liberal
and professional pursuits. During the year 1887-1888 Miller was
Principal in the schools of Greeley, Kansas. From 1888 to 1893 he
was Professor of Mathematics at Eureka College in Eureka, Illinois.
In 1892 he received the degree of Doctor of Philosophy from Cum-
berland University in Lebanon, Tennessee. It is not known that
he ever went to Lebanon, although it is likely that he wrote some
examinations there. He was registered as a graduate student at Cum-
berland during the year 1891-1892, but graduate work could be taken
by correspondence and Miller was teaching at Eureka during the
year. A thesis was a requirement for the degree, but examinations
in the advanced courses could be substituted for the thesis. He was
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offering the same courses and the doctor’s degree at Eureka and
was using the same texts. He had a graduate student taking these
courses for two years but the student did not receive the doctor’s
degree, although he did succeed Miller as Professor of Mathematics
at Eureka. In the summers of 1889 and 1890 he went to Johns
Hopkins and the University of Michigan, although neither univer-
sity was in session during these summers. If he had contact with
the mathematicians at these places there is no trace of it to be
found. When he went to the University of Michigan as Instructor
in 1893 he lived in Cole’s home, and he credited Cole with starting
him on his career in the theory of groups. But if he met Cole in
the summer of 1890 no spark was struck, for if there had been
Eureka would have had a course in the theory of groups.

He spent the years 1893-1895 as Instructor at Michigan. During
the years 1895-1897 he was in Europe attending the lectures of
Sophus Lie at Leipzig and Camille Jordan in Paris, and wrote
prodigiously on the theory of groups. He is, therefore, numbered
among the group of mathematicians with European training. He
credited Lie with starting him on a systematic study of commutators
and commutator subgroups, but otherwise Lie’s influence on him
was small. Neither Lie nor Miller was greatly interested in the
other’s groups. Jordan was interested in questions of primitivity
and imprimitivity and Miller kept returning to these questions for
the remainder of his life. It is doubtful, however, that Jordan influ-
enced him greatly, for Miller worked on his own problems with
his own methods and he never engaged in the explanation of
Jordan’s works or Jordan’s methods. From 1897 to 1go1 Miller was
Assistant Professor at Cornell; during 1901 to 1906 he was Assistant
Professor and Associate Professor at Leland Stanford; from 1906
he was at the University of Illinois serving as Associate Professor,
Professor, and from 1931 Professor Emeritus.

He was married in 1909 to Cassandra Boggs of Urbana, Illinois.
They had no children and Mrs. Miller died in 1949.

The catalogues of Eureka College for the years 1887 to 1895
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reveal the G. A. Miller that was known to the writer by daily asso-
ciation during his last thirty years. Under the heading of the Depart-
ment of Mathematics in the Eureka catalogue of 1889-18go appears
the following:

“ .. The study of mathematics—
a. Develops the power of reasoning.
b. Cultivates precise methods of reasoning.
c. Trains the mind in abstract thinking.
d. Lifts from servile imitation to original thinking.
e. Gives a steady and dignified bearing to the mind.
f. Enables the student to understand all the other sciences better.
g. Cultivates the habit of persistent and well-directed exertion, and
h. Cultivates the habit of distinguishing clearly between the
known and the unknown.

Authority for all these statements may be found in the works of
the greatest philosophers. . . .”

One can see the young, meagerly trained Professor of Mathe-
matics called upon by the President for copy for the catalogue; he
is not content to offer the customary list of requirements and lauda-
tory but vague assertions about the value of mathematics; he thinks
out and states in detail his philosophy of education and the part
that mathematics has in it. Sixty years later he would have been
more precise in referring to the philosophers, but the goals he set
up in 1889 were the ones toward which his whole life was directed.

The statements under Mathematics in the catalogues change from
year to year. In 18go Miller offered the doctor’s degree. New ad-
vanced courses were offered. The description of one of these in
1892-1893 reads: “The Higher Algebra and Determinants have been
prepared expressly for the students of this institution. The treatments
of the following subjects are more comprehensive than those given
by any other American text-book on Higher Algebra, Logarithms,
Choice and Chance, Apparent Paradoxes, Determinants, and Theory
of Numbers. The other subjects commonly treated in works of
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this kind are introduced and discussed according to the most ap-
proved methods.” The book to which this refers was published
under the title Determinants in 1892 in the Van Nostrand Science
Series. It could have been said of him in 1893 that here is a man of
power who appreciates his own worth, who claims his place in the
sun, and who, while vigorous and astute in seeking that place, offers
solid achievement as the basis of the claim.

The publication of lists of all the substitution groups of low de-
grees was started in 1850 when a French mathematician, Serret,
listed all the 19 possible groups of degrees not greater than five.
Miller came upon the scene in 1893 to complete the lists for degrees
eight and nine. The principles underlying the determination of all
the groups of a given degree were then fairly clear. Miller put them
to use and rapidly went on to determine the gg4 intransitive groups
of degree ten; these brought to 1,039 the total number of groups,
transitive and intransitive, of degree ten. Jordan had determined
the eight transitive groups of degree eleven in 1872. Miller and a
student, a G. H. Ling, determined the 1,492 intransitive groups of
degree eleven in 19o1. Miller did the transitive groups of degree
twelve in 1896; the transitive groups of degrees thirteen and four-
teen and the primitive groups of degree fifteen in 1897; the primi-
tive groups of degree sixteen in 1898; and the transitive groups of
degree seventeen in 1899. The subject of the determination of sub-
stitution groups, which had interested many mathematicians besides
Cayley and Jordan, was virtually taken over by Miller in 1893, and
he finished it in the sense that nobody has tried to go beyond
him and probably nobody has followed him so far. His work on sub-
stitution groups could be carried on but probably will not, unless
someone should see how to put a high-speed computer to work on
it. Any obvious attack with a computer seems sure to lead directly
to insuperable difficulties.

Miller’s belief in persistent and well-directed exertion would have
taken him beyond the transitive groups of degree seventeen if he
had not early become interested in abstract groups. Every substitu-
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tion group is a representation of one and only one abstract group;
an abstract group may have many representations as a substitution
group on a given number of letters. In determining all the substitu-
tion groups of a given degree, it is necessary to know much about
the abstract groups that can be represented on smaller numbers of
letters. Every abstract group can be represented in one and only one
way as a regular substitution group, that is, a group which is tran-
sitive and has its degree equal to its order. Miller’s first work on
abstract groups was done in terms of regular substitution groups,
and throughout his life he returned to regular substitution groups
to study certain properties of abstract groups. There is an element
of the fantastic in his first publication on abstract groups. In 1884
Felix Klein used a certain method to prove that a group of order
60 was simple. In a paper dated November 5, 1894, E. H. Moore
used the same method to prove that a group of order 168 was simple,
and asked if anybody knew of a simple group on which that method
would not work. On December 28 Miller gave him an example,
the alternating group on 68 letters. The non-mathematical reader
may be interested in knowing that the alternating group on 68 letters
has order one half of 68!, that 68! is the product of all the integers
from 1 to 68, and that this is 2 number which if written out would
require about two lines on this page. One man displays an inclina-
tion to generalize from his experience with the two smallest simple
groups, and the other, though a novice, answers the question even
if he has to go beyond astronomical figures to do it.

Miller’s first considerable contribution to abstract groups, also
done in terms of regular substitution groups, was his list in 1896
of all the abstract groups of orders less than 48. This paper con-
tained the first determination of the 15 groups of order 24 and the
51 groups of order 32. The enumeration of all the abstract groups
of low order had been begun by Cayley in 1854 when he proved
that there are just two groups of each of the orders 4 and 6; in
1859 Cayley determined the 5 groups of order 8, and in 1889 the
5 groups of order 12. The 14 groups of order 16 were determined
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in 1893 by two men independently, J. W. A. Young, an American
student under Bolza at Clark, and Hélder in Germany. Shortly
before Miller’s paper in 1896 a French mathematician, Le Vavasseur,
had announced in the Compzes Rendus that he had found 75 groups
of order 32 and that he had not yet reached the end. Two years
later an Italian, Bagnera, stated in the Annali di Matematiche that
Miller had made a mistake and there were 50 groups of order 32,
but the following year he agreed that the number is 51. The orders
for which there are the largest numbers of distinct abstract groups
are orders which are divisible by a high power of a prime number;
the smallest of these are thus the powers of 2: 2, 4, 8, 16, 32, 64, 128.
In 1930 Miller determined the 294 groups of order 64; he estimated
at that time that there are more than a thousand groups of order
128. He had determined the 52 groups of order 48 and the 15 groups
of order 54 in 1898; he did those of order 54 by showing that there are
just 15 groups of order 2p® for every odd prime p. He determined the
57 groups of order 168 in 1902, the groups of order 72 in 1929, and
those of order g6 in 1930. In the 34 years between the publication of
his lists of the groups of orders 32 and 64 only one man, Pétron,
had offered a list of the groups of order 64 and that was not a suc-
cess. Miller thus took over the enumeration of abstract groups at
order 24 and carried it to order 100. The enumeration has since
been carried to order 160, omitting order 128.

The two most fundamental questions about groups are: What
groups exist? How can one group be distinguished from another?
Information sufficient to determine a particular group will be enough
to determine all of its subgroups, and sufficient information about
subgroups and their relations will be enough to determine the
group. Thus these lists of substitution groups of low degrees and
of abstract groups of low orders not only answer the first question
as far as they go, but they provide tools for the investigation of the
groups beyond.

The second question above may be restated: What questions
should one ask of a group so that the answers will enable one to
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identify it? Miller’s life was directed toward that question. When
the group is abelian the answer is simple and was known before
Miller’s time. At the beginning of his career it was hoped that the
answer for non-abelian groups, if not simple, would still be dis-
coverable. As it became clear that the answer was not easy, it seemed
apparent that the only place to look for clues was in the groups
that were known and others that could be determined. Miller’s
attack was so direct that he never discovered that among the diffi-
culties he encountered were difficulties other mathematicians had
met in other fields which had forced abandonment of their attempts,
at least temporarily.

The simple groups of composite order are few and far between.
There are but 53 known simple groups of orders less than a million
and they are of particular importance in the study of finite groups.
The first six have orders 6o, 168, 360, 504, 660, 1,092. That these are
the only ones up to this order was proved by Hélder, Cole, and
Burnside. Miller, with G. H. Ling, proved in 19oo that there is no
other with order 2,000 or less. In 1922 he proved there is only one
simple group of order 2,520. All simple groups of order not greater
than 6,232 are now known.

Two things that Miller did with simple groups would have kept
memory of him fresh if he had done no more. In 1900 he proved
that the Matthieu fivefold transitive group of degree 24 is simple,
as are its maximal subgroups of degrees 23, 22, and 21. The group
was first published in 1873, but Matthieu had known it in 1861.
The Matthieu groups present a challenge to mathematicians since
no other fourfold or fivefold transitive group is known and nobody
can prove no others exist. Moreover, these are the only known
simple groups that do not belong to any of the known infinite
systems of simple groups. Miller’s first words on this group, whose
order is just under 245 million, were contained in a paper pur-
porting to prove that the group does not exist. This was one of
the few mistakes he made. The second thing Miller did with simple
groups was remarkable in its time and has not been superseded
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yet. He proved in 1goo that a simple group of odd composite order,
if any such exists, cannot be represented as a substitution group on
fewer than 51 letters. This will be forgotten if ever a simple group
of odd composite order is found, or if it can be proved that none
exists, but so far nothing more definitive can be said.

There are many questions that present themselves early to the
student of the theory of groups that Miller was the first to answer.
One had been current for a long time. In 1856 W. R. Hamilton had
studied the so-called polyhedral groups, the rotation groups of the
regular polyhedra. He had shown that these groups can be defined
as the groups generated by two elements s and # subject only to
the conditions that s be of order 3, z of order 2, and their product
st of order 3, 4, or 5: 3 for the tetrahedron, 4 for the octahedron
and cube, 5 for the dodecahedron and the icosahedron. If s and ¢
are both of order 2, the group depends only on the order of their
product, and these groups were well known. It was not known
whether any other set of numbers for the orders of s, ¢, and sz were
sufficient to determine a particular group. Miller proved in 1902
that for any other set of numbers, s and ¢ may be selected to gen-
erate any one of an infinite set of groups. In such case at least
one other condition must be imposed on s and # if a particular
group is to be obtained. He worked off and on with problems of
this kind as late as 1920, trying conditions on commutators, con-
ditions that would ensure certain quotient groups, conditions on
groups of p-th powers. One interesting set of groups near Hamil-
ton’s groups is the set obtained when s and ¢ satisfy the conditions
s$* =12 = (st)°* =1; these are the groups of deformations of a
regularly subdivided anchor ring into itself.

A question that was widely current around 19oo was answered
by Fite in 1902, in a dissertation written under Miller at Cornell,
when he exhibited a commutator subgroup containing an element
which was not a commutator. Miller shortly gave an infinite system
of groups having this property, i.c., the elements of the commutator
subgroup are not all commutators.
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Just before 1900 there was current the question whether two dis-
tinct abstract groups could have the same numbers of elements of
each other. That they can is shown by the groups of order 16.
Miller designated this relation by naming the groups conformal.
Two distinct abelian groups are not conformal. In 1go2 Miller
determined the abelian groups that are conformal to non-abelian
groups, and showed that there is no upper limit to the number
of non-abelian groups conformal to each other and to the same
abelian group. It is hard to believe now that this was ever a serious
question, but in the 18g0’s a student at Chicago proposed to prove
that the only groups with elements all of order an odd prime p
are the well-known abelian ones, which is true when p is 2.

A similar question, whether two distinct groups can have the
same group of isomorphisms, was recently asked seriously by an
able and experienced student of groups. Miller answered this in 1goo
when he proved that there are five groups whose groups of iso-
morphisms are the same group of order 24. In the same paper he
proved the very useful fact that an abelian group must be cyclic if
its group of isomorphisms is abelian.

A group of order » can be represented as a regular substitution
group on 7 letters. It is thus a subgroup of the symmetric group of
degree . This symmetric group is well defined for any 7 and hence
its subgroups are all defined and theoretically obtainable. The work
with substitution groups shows that this attack on the groups of
order » is not feasible. A group of order 7 has a composition series,
which means that the group has a series of subgroups each invariant
in the preceding one and such that the quotient group of one with
respect to the next is a simple group. If none of these simple groups
is of composite order, the original group is solvable. The solvable
groups of order » can be attacked from another direction. The last
group in the composition series is the identity and the one preceding
that is cyclic if the group is solvable; the group which precedes
that contains the cyclic group as an invariant subgroup of prime
index. Miller gave in 1901 a method by which can be found all
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the groups of a given order which contain a given group G as a
subgroup of prime index. In this paper he dealt with G of very
special restricted type. He came back to this again and again,
the last time in 1928 when no restrictions were placed on G. He
thus offered a step-by-step method to determine all solvable groups.
The method is practical only to a limited extent, as he recognized,
because different series of steps may lead to the same group. It was
useful to him in determining the groups of order 64.

The first two people who determined the groups of order 16
did not observe that each of the fourteen contains an abelian sub-
group of order 8. Miller observed this and proved that every group
of order p™ contains an invariant abelian subgroup of order p* if
m is as large as a(a-1) /2. This is an important fact in the applica-
tion of the method of the preceding paragraph since it eliminates
the first a steps.

A group of order » contains a subgroup of order p” if p™ divides
n and p"** does not. The prime power groups are therefore im-
portant. A prime power group is solvable. The term class of a
prime power group was first used in Fite’s dissertation to which refer-
ence was made earlier. A prime power group has a central which is
not identity; the corresponding quotient group is a prime power
group which accordingly has a central not identity. This second
central determines a characteristic subgroup of the original group.
This process may be continued until one arrives at the stage where
the characteristic subgroup obtained is the whole of the original
group. The number of steps in this process is the class of the group.
The abelian groups are of class 1; Fite called groups of class 2
metabelian. These names have remained in the literature. Miller
has said that we are inclined to give undue credit to men whose
names have become prominent. To have written this paragraph,
cautious though it is, during Miller’s lifetime would have been
to invite some uncomfortable moments pondering the treachery
of circumstantial evidence.

The transitive groups of degree p =24 -} 1, where p and g are
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primes, are interesting because the Matthieu groups are closely
connected with the cases p=11 and p=—=23. Jordan and de
Seguier proved that for p = 47 and p =59 there are no transitive
groups except six that are easily exhibited for any such p. Miller
devised a method by which the question can be answered for
any such p. He verified the work of Jordan and de Sequier and
used the method for p = 83, stating the result that there are only
six transitive groups of degree 83. The method shows how to get
42 different elements of order 2, each on 82 letters. Denote one of
these elements of order 2 by #, and denote the element of order 83
by s. The group [s, #] is then examined. For each of the 42 #’s Miller
says the group [s, #] is the alternating group of degree 83, of order
83!/2. Probably nobody has ever checked his conclusion. This
seems to be something a high-speed computer could do, since the
computer could be told how to identify the alternating group with-
out keeping the alternating group in its memory. Sooner or later
this theorem will be checked, for mathematicians will not per-
manently accept defeat on the problem of fourfold transitive groups,
and if more such groups are found they will still want to know
about groups of degree 83.

In the more than four hundred technical papers that Miller
contributed to the research journals many other subjects are treated
that would merit mention here. His work on commutator sub-
groups, ¢-subgroups, groups of isomorphisms, and characteristic
subgroups was of fundamental importance and of permanent value.
The problems he could not solve usually led him to results that
were of permanent value. He pursued these problems further than
many others have been willing to go. He never pursued them to
the point of getting results so complicated to state that other people
could not understand them. He was never interested in translating
a problem into a new problem unless he could thereby make
progress with the original one. He advanced the science by the
positive contributions he made, and also by exploring paths that
look promising but that lead to difficulties not readily foreseeable.
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Early in his career Miller started explaining the theory of groups
and mathematics in general to people who are not expert in the
respective subjects. In volumes 2 and 3 in 1895-18¢6 of the Ameri-
can Mathematical Monthly he published in fourteen installments
the most complete treatment of the construction of substitution
groups to be found in the literature. He continued all his life to
promote the theory of groups, by explaining groups to non-special-
ists, by pointing out desirable uses of groups in teaching elementary
mathematics, by publishing collections of quotations from eminent
mathematicians who spoke well of groups.

Miller’s most important publication on a general subject was
probably “Some Thoughts on Modern Mathematical Research.”
This lecture was given before the University of Illinois chapter of
Sigma Xi in 1912. It was printed in Science and was reprinted in
the Annual Report of the Smithsonian Institution as one of the
most important memoirs published in America during the year.
“Some may be tempted to say that the useful parts of mathematics
are very elementary and have little contact with modern research.
In answer we may observe that it is very questionable whether the
ratio of the developed mathematics to that which is finding direct
application to things which relate to material advantages is greater
now than it was at the time of the ancient Greeks.” These sen-
tences from the concluding paragraph suggest the tone; they are
arresting today.

Published also in Science (1917) was “The Function of Mathe-
matics in Scientific Research,” a paper delivered before the Science
Club of the University of Wisconsin. This is likewise profound,
thought-provoking, and is still timely.

In his papers directed toward teachers of elementary mathe-
matics he was for some years after 1900 urging the introduction of
the study of groups. He wrote a “New Chapter in Trigonometry.”
He attempted to stimulate teachers of mathematics to study mathe-
matics. If he felt that his own teachers had been ignorant of mathe-
matics he never made mention of it. It is a fact that in this country
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a very small proportion of the teachers of secondary mathematics
have ever got near mathematics. The thing Miller was trying to
do is still to be done. He did more than the ordinary mathematician
does to try to bring some of the ideas of higher mathematics to
their attention and within their reach.

After theory of groups Miller’s next interest was history of
mathematics, and he studied history longer than he studied groups.
He introduced a course in History of Mathematics at Eureka in
1890; he published his book Historical Introduction to Mathematical
Literature in 1916; his last publication was “An Eleventh Lesson
in the History of Mathematics” in the National Mathematics Maga-
zine in 1947.

He was at his best as an historian when he was writing about
the history of his own subject, the theory of groups and in particular
finite groups. In 1899 he published his “Report on Recent Progress
in the Theory of Groups of a Finite Order.” This was history re-
ported as it was being made. This and the second Report four
years later are of extreme importance to any later historian. Ab-
stract group theory was just acquiring autonomous status; it had
many followers, especially in America; and its devotees were very
active. These Reports are valuable for what they contain but are
valuable also for things they do not contain. For example, in 1898
Miller had not yet met the question about commutator subgroups
containing elements which are not commutators, the question which
Fite and Miller answered in 19o2. In the Report of 1899 Miller
says of the commutators that they “form™ the commutator sub-
group. “Form” in this context is not precise: if it means generate
his statement is correct; if it means constitute the statement is in-
correct, and the latter is the more reasonable meaning. If he had
met the question the statement would have been precise and would
have been correct.

He wrote many short papers on the early history of groups.
Most of these, but not all, were the result of his study of the writ-
ings of the earlier workers in the subject. The culmination of his
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work on the history of finite groups is the set of articles he wrote
for volumes I, II, and III of his Collected Works. In volume I are
two historical notes on the determination of substitution groups
of a given degree and of abstract groups of a given order, and a
history of groups to 1900. In each of volumes II and III is a his-
tory of groups during the period in which the papers in the volume
were first published, thus bringing the history to 1915.

His besetting sin as an historian was that he did not generally
feel called upon to acquaint himself at firsthand with the original
sources. This was true to a lesser extent in the history of groups,
although sometimes true there. Too much of his history on sub-
jects other than his specialty consisted in confronting historian
A with historian B or of confronting historian A with contradic-
tory statements of A’s own. He did this in a suitably objective
manner, but it was generally believed that Miller was too much
interested in discrediting historian A. Quite different from this
are his arguments about the Greeks and the quadratic equation.
Many people are willing to say the Greeks solved the quadratic
equation since they used the method we use today, yet such a
statement does not fit well with the fact that they had no concept
of imaginary numbers and were not comfortable with negative
numbers.

Although Miller’s friends deplored much of his history, they
could not quarrel with his aims. He believed that the student, and
certainly the teacher, should know something of the history of
mathematics. He believed that the history that is taught should
be real history and not plausible answers to historical questions,
that owning ignorance where ignorance exists is preferable to
offering entertaining myths.

He expended much energy and alienated many well-wishers by
coming back again and again to point out errors in a history of
mathematics that has been widely used. In fact no history in English
has been free from repeated attacks. Encyclopaedia Britannica and
Webster’s Dictionary were combed for errors about groups, mathe-
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matics, and their histories. He held the dictionaries and encyclo-
pedias to as strict account in their statements about mathematical
concepts as he held the research mathematician writing about his
specialty. He knew that a book which contains heroes and villains
will be more widely read than one about mortals who sometimes
succeed and sometimes do not, but the writer who tried to put
this fact to use in furthering a knowledge of the history of mathe-
matics was called to account for taking liberties in the most in-
consequential matters. He stated in his Historical Introduction:

“The caliber of a mathematician can probably be judged just as
accurately from the errors to which he pays attention as from
the new results which he announces. In both cases, he can devote
himself to trivialities or to big things.” There is no doubt he saw
the application to historians as well. It will always be a thankless
task to root out the errors that have crept into the history of mathe-
matics and we all have a duty in that regard. When we impute
excessive zeal to Miller we must assume an awkward defense of
tolerance of error.

His relentlessness in the pursuit of error is shown in the case
of the French encyclopedia where it had no ill effect so far as
is known. The Encyclopédie des Sciences Mathématiques started
publication in 1904; it asked for corrections and engaged to print
them in a special section called Tribune Publigue. At the end of
the first volume was a section of about eighty pages on finite
groups. Miller supplied the Tribune Publique with nearly twenty
pages of corrections, historical and technical.

He recognized that an historian who disapproves of all the
available histories of mathematics is under some obligation to write
a history of his own. His Historical Introduction was one offering
and it is relatively free of the things to which he objected. Also
he wrote a History of Elementary Mathematics. This was offered
for publication in the early 1930’s, which was not an opportune time.
It remains unpublished; but it is planned that it will appear in
his Collected Works.
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While Miller was in California he assisted in the organization
of the San Francisco Section of the American Mathematical So-
ciety, and he was its Secretary until 1906. He was a member of
the Council of the Society from 1901 to 1904. He was Chairman
of the Chicago Section from 1907 to 1909; he was Vice-President
of the Society in 1908. He was Secretary of section A of the Ameri-
can Association for the Advancement of Science from 1907 to 1912.
He was one of the group that founded the Mathematical Associa-
tion of America in 1915; he was one of the two Vice-Presidents
in 1916; he was President in 1921. He was one of the editors of
the American Mathematical Monthly from 1909 to 1915. He was
a member of the London Mathematical Society, of the Deutsche
Mathematiker Vereinigung, a corresponding member of the So-
ciedad Matematica Espafiola, an honorary life member of the In-
dian Mathematical Society. He was a Fellow of the American
Academy of Arts and Sciences. He was made an honorary life
member of the Mathematical Association of America in 1937.
The honorary degree of Doctor of Letters was conferred on him
by Muhlenburg in 1936.

On his retirement in 1931 the University of Illinois undertook
the collection and republication of his technical papers. Volumes
I to IV of the Collected Works of George Abram Miller have so
far appeared. There will be one or two more volumes, the last
one of which will contain his unpublished History of Elementary
Mathematics to which reference has been made.

During the nineteen years after his retirement he followed the
regime he had been following before; he went to his office in the
Mathematics Building morning, afternoon, and evening. On more
than one Sunday morning, when the University doors are locked,
Mrs. Miller had to enlist the aid of someone with a key in order
to communicate with him. He did not relax his devotion to the
habit of persistent and well-directed exertion, but stopped writing
in 1947 when his hand could no longer control his pen. He kept
a watchful eye on the additions to the Mathematics Library, and
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in the margins of the books he made comments and inserted cor-
rections of their historical blunders. He took daily walks around
the campus and beyond, but he never went far from town in the
nineteen years. Occasionally in the evening he played bridge and
was a keenly competitive player, but he never attained to the
seriousness of purpose that is common among mathematicians who
play bridge. He wrote in one of his papers for the edification and
guidance of the young that a man who must go afield for his
fun and recreation is not likely to become a scholar.

Probably long before Eurcka he was engaged in giving a steady
and dignified bearing to the mind. He was easy and responsive
in conversation but there was always a push away from the im-
mediate to things more enduring and of general import. One
friend might hear of a pertinent incident from his childhood on
the farm; another might hear of a personal experience at Eureka
or at Michigan; another might hear of his planting a rosebush
in his friend’s yard so he would not be forgotten when he left
Cornell. Very few heard much. Yet nobody who knew him thought
him secretive, even after he had completely astounded all who had
known him for years.

Some weeks after his death the newspapers and the radio an-
nounced that Miller had left to the University of Illinois an estate
valued at just under a million dollars. In the week before he died,
when he had given in to the urging of friends and was going to
the hospital, he had asked who was going to pay for this. Friends
of recent date who had seen him leading the life of a professor on
retirement pay were worried about the expense; those who had
known him longer recognized his intention to make well-meaning
but officious people squirm a little. A man with a brief case, ob-
viously not a college professor and certainly not an insurance sales-
man, who had been coming to Miller’s office off and on for years,
had prepared many of his associates to hear that Miller had been
interested in the investment market. But many a man has spent
a lifetime rushing about and still the million dollars has eluded him.
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Miller had never been preoccupied, or rather he had been pre-
occupied by a statement which he misread to mean that a Rus-
sian mathematician had proved there is no simple group of odd
composite order, or by a purported dialogue between Euclid and
a student which appeared in a book about mathematics written
by a reputable mathematician.

Miller had not been preparing a joke on his associates. If he had
thought the million dollars was important it would have appeared
in the journals. The million dollars is something that attached it-
self to Miller as he went steadily on his way, not denying or de-
spising the world but certainly not giving it dominion over him.
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KEY TO ABBREVIATIONS
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Annals = Annals of Mathematics
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Bibliotheca = Bibliotheca Mathematica

Bull. = Bulletin of the American Mathematical Society

Bull. France = Bulletin de la Societ¢ Mathématique de France

Bull. N. Y. == Bulletin of the New York Mathematical Society

Collected Works — The Collected Works of George Abram Miller

Comptes Rendus = Comptes Rendus de 'Académie des Sciences

Educ. Review = Educational Review
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Sci. Monthly = Scientific Monthly

Sci. Prog. = Science Progress
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Smithsonian Inst. = Smithsonian Institution, Annual Report
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