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ELLIOTT WATERS MONTROLL

May 4, 1916—December 3, 1983

BY GEORGE H. WEISS

LLIOTT W. MONTROLL was born on May 4, 1916, to Adolph

B. and Esther I. Montroll in Pittsburgh, Pennsylvania.
His father, an immigrant from Poland, and his American-
born mother encouraged him from an early age to pursue
his interests in chemistry, which he did in high school as
well as in his undergraduate studies at the University of
Pittsburgh. However, after receiving his bachelor’s degree
in chemistry, Elliot switched fields as a graduate student,
receiving his Ph.D. in mathematics at the age of twenty-
three. A forerunner of his later interests, Elliot’s thesis
was on application of the theory of integral equations to
the evaluation of integrals that appear in the analysis of
imperfect gases.! The techniques developed in his thesis
were based on linear operator theory and Fourier inte-
grals. These tools were to prove the cornerstone to a sig-
nificant portion of Elliot’s future work.

Following the receipt of his doctorate, Elliott spent three
years as a postdoctoral fellow working for a year at Colum-
bia with Joseph Mayer, followed by a year as a Sterling
fellow at Yale with Lars Onsager, and finally spending a
year with John Kirkwood at Cornell. After this period of
study, he accepted an instructorship at Princeton in 1942.
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It was at the last of these that Elliott met his future wife,
Shirley Abrams, whom he married in 1943. Their mar-
riage was an unusually warm and happy one, producing
ten children over the years. Much of Elliott’s fertile imagi-
nation was devoted to producmg new and novel ways to
educate his children.

During the war Elliott worked at the Kellex Corporation
in New York City as a chief mathematician analyzing prob-
lems arising in the production of the atomic bomb. This
work also served as a source of techniques that he later
developed and applied in other scientific fields. Following
the war Elliott briefly held teaching and research positions
at Brooklyn Polytechnic Institute and the University of Pitts-
burgh. He later became the director of physical science at
the Office of Naval Research, after which he returned to
the world of research, spending a year as a fellow at the
Courant Institute in New York City.

In 1951 the Montrolls returned to the Washington area,
and Elliott took a position as a research professor at the
Institute for Fluid Dynamics and Applied Mathematics at
the University of Maryland. During this time he spent a
sabbatical period with Ilya Prigogine at the Free University
of Brussels, and he held the position of Lorentz Professor
at the University of Leiden in 1961. Following this period
at the University of Maryland, Elliott decided that he wanted
to get a taste of industrial research, several of his doctoral
students having gone into industry, and so he left the Uni-
versity of Maryland to become a vice-president in charge of
physics research at IBM, a position he held for three years,
during which time he also acted as a consultant for the
Institute for Defense Analysis. After having been the di-
rector of general sciences at IBM, Elliott took on the posi-
tion of vice-president of the Institute for Defense Analysis.
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In 1966 he accepted an offer of an Einstein professorship
at the University of Rochester, which he held until 1981
when he returned to the Institute for Physical Science and
Technology at the University of Maryland. Subsequent to
his appointment he was named a distinguished professor
at the university in 1982. This position was held until his
death.

The time that Elliott spent at universities produced a
large number of doctoral students. His research groups,
always extensive, provided a lively intellectual atmosphere
and were filled with many junior and senior postdoctoral
investigators, all working on a variety of topics as befitted
Elliott’s wide-ranging research interests. His catholic tastes
and interest in topics outside of science proper produced
many unusual contributions to disciplines outside of math-
ematical physics and led to his teaching such courses as
“Quantitative Aspects of Social Phenomena” and “The Physical
Basis of Modern Technology” at the University of Roches-
ter.

Elliott’s scientific style was extremely elegant, producing
insight into often difficult physical problems usually by means
of very simple calculations. One of his earliest pieces of
work resulted in the publication, together with Joseph Mayer,
of a technique for the summation of the contribution of
the class of ring diagrams in the diagrammatic analysis of
the theory of imperfect gases.? This seminal contribution
proved to be the forerunner of a powerful technique sub-
sequently adapted by many investigators to analyze a vari-
ety of problems in both equilibrium and irreversible statis-
tical mechanics. A second, slightly less successful investigation
was carried out while Elliot was a postdoc with Lars Onsager
into the solution of the Ising model. Elliott developed a
technique for solving the partition function of the Ising
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model but was only able to solve the one-dimensional case
exactly and find high- and low-temperature expansions for
the partition function in two dimensions. Onsager, of course,
provided an exact solution in two dimensions which, for
the first time, showed that the mathematical formalism in-
deed predicted a phase transition for this model.
Although it was not Elliott who solved the Ising model,
his work on it led to other significant contributions. For
many years a review article by Newell and Montroll on the
Ising model was the most readable and most widely cited
introduction to the subject.® A second bonus of Elliott’s
work on the Ising model consisted of some work first pub-
lished in the jJournal of Chemical Physics in the context of
the Ising model.* After the mathematical ideas had been
distilled from this work Elliot published an elegant exten-
sion of it in the Annals of Mathematical Statistics.® This later
paper contained a general and easily applicable formalism
for calculating the probability distribution of functions de-
fined on a Markov chain or a continuous Markov process.
The technique will be recognized as starting from the ana-
log of a partition function but proved valuable in making
the statistician aware of the extension of the notion of the
characteristic function to the domain of Markov processes.
Elliott showed that computations based on his technique
could be expressed in terms of the properties of certain
matrices. These could then be analyzed in terms of
eigenfunction expansions of the relevant matrices. Among
other benefits available with this technique is the possibil-
ity of finding Gaussian approximations as well as correc-
tions to the calculated properties in a straightforward way,
in contrast to more formal but somewhat less general tech-
niques used in earlier mathematical literature.® This work
also contained many of the recurring themes found in Elliott’s
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later work on stochastic processes and their applications.
Elliott was a master of techniques involving applications of
the asymptotic analysis of linear operators to problems in
the physical sciences. The work described here was a sig-
nificant contribution to applied probability.

Among Elliott’s earliest work were three papers on lat-
tice dynamics, a subject in which he became interested
when working as a postdoctoral fellow with J. G. Kirkwood
and in which he maintained an interest for many years
following.®10 Until the time of Elliott’s investigation, most
of the work on thermodynamic properties of solids used
the Debye model for the frequency spectrum of the solid
in calculating these properties.!! This model used the ap-
proximation that the frequency spectrum associated with a
solid could be calculated from a continuum picture. It
had been known since the work of Blackman in the 1930s
that the Debye model was inadequate in reproducing much
of the experimental data on the specific heat of solids.
Blackman’s work suggested that one could not neglect the
lattice structure of the solid and suggested that the proper
starting point for investigating thermodynamic properties
of solids was the Born-von Karman model, which pictured
the solid as a lattice of discrete atoms connected by springs
that obeyed Hooke’s law.!? The question addressed in the
first of Elliott’s contributions to the subject was how to
calculate the frequency spectrum for the Born-von Karman
model.® The first step in the analysis consisted of showing
that one could calculate moments in terms of the trace of
powers of the dynamical matrix. The second step con-
sisted of an expansion of the frequency spectrum in an
infinite series of Legendre polynomials. In this way Elliott
was able to reproduce many of the features of the fre-
quency spectrum determined by Blackman by numerical
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means. He later returned to the problem of doing exact
two- and three-dimensional calculations of the frequency
spectrum for simple cubic lattices using the Born-von Karman
model, finding the infinite peaks later shown to be a gen-
eral consequence of symmetry properties of the lattice.%1?
The theory of lattice dynamics proved to be a fertile
field for Elliott’s combination of techniques and talents
for over twenty-five years dating from his initial contribu-
tion to this area of physics. As an example of this, Elliott
and Renfrew Potts tackled the problem of calculating ther-
modynamic properties of lattices, particularly lattices with
defects.!®!* This involves computing sums of the form

S= Zg(w,-),
Jj

where g(®) is determined by the particular thermodynamic
property and the @ are the characteristic frequencies of
the lattice determined by the solution of the dynamical
equation D(w)=0, where D(w) is a determinant whose ele-
ments contain all of the physics of the problem. Montroll
and Potts solved the problem very neatly by utilizing a rep-
resentation derived from Complex analysis
f (2 )D @ 4
" omi D(z )
in which g(z) is the thermodynamic function, D’(z) is the
derivative of the dynamical matrix, and the contour is cho-
sen to surround the zeroes but not the poles of D(z). The
effects of lattice defects could be found, using this formal-
ism, by subtracting the contribution of the perfect lattice,
which can be calculated in exactly the same way as indi-
cated by the last equation.
Another significant finding contained in this particular
series of papers is the technique for calculating the values
of vibrational frequencies that may emerge from the con-
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tinuum of frequencies when defects are present in the lat-
tice. Montroll and Potts showed that when there are n
defects in the lattice, a maximum of n frequencies will
separate themselves from the continuum of frequencies found
in the analysis of translationally invariant lattices. They
further showed that the emergent frequencies could be
found by the solution of an n X n determinant whose ele-
ments consisted of Green’s functions that characterize the
lattice. All of the calculations were a demonstration of the
elegance of essentially eighteenth-century classical math-
ematical analysis, of which Elliott was a master. Elliott’s
mastery of the subject of lattice dynamics led to his
coauthorship of Lattice Dynamics in the Harmonic Approxima-
tion with Alex Maradudin and myself.!> Somewhat charac-
teristically, the book was originally supposed to have been
a review article for Advances in Solid State Physics, which
Elliott put off writing until there was so much material
available that it could only fit into a book.

Aside from the analysis of lattice dynamic problems sug-
gested by applications in solid state physics, Elliott, together
with Peter Mazur, studied the properties of Poincaré cycles
for an assembly of harmonic oscillators as a simple model
for irreversibility in statistical mechanics.!® This appeared
in the first volume of the Journal of Mathematical Physics, of
which Elliott was the founder and first editor. Because of
Elliott’s familiarity with the formalism on linear lattice dy-
namics, it was an easy and revealing tool for the analysis of
problems that are quite difficult for physical systems with
more complicated interactions. In the publication with
Mazur, the authors were able to find precise results for the
dynamics as expressed by the Poincaré cycle and the mo-
mentum correlation function. They were able to show that
the length of the Poincaré cycle for a system of N atoms
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goes like exp(aN), the parameter a being positive, which
identifies the time during which the system will appear to
behave irreversibly.

While engaged in this work on lattice dynamics, Elliott
also made fundamental contributions to the theory of
‘unimolecular relaxation as a consultant to the National
Bureau of Standards, in collaboration with Kurt Shuler.17:18
The investigators managed to shed considerable light on
an important field through the study of a simple physical
model as well as to initiate lines of research in the study of
chemical kinetics that have been pursued to the present
time. Although the original work consisted of a study of
the relaxation and dissociation of a weakly interacting sys-
tem of harmonic oscillators, the formalism developed has
been shown to apply to many other systems. The first step
in this area of research was made by Landau and Teller,
who calculated the collisional transition probabilities per
collision for a system of harmonic oscillators, which subse-
quently allowed Bethe and Teller to find the average en-
ergy of an ensemble of such oscillators as a function of
time. Montroll and Shuler first undertook the more exact-
ing task of formulating a theory allowing the calculation of
all of the statistical parameters characterizing the relax-
ation of the system. They did this by using Landau and
Teller’s form of the rate constants, which allowed them to
write a master equation for the set of occupation prob-
abilities of the different energy levels of the system. This
system of equations could then be solved by using generat-
ing functions. Montroll and Shuler showed that the sys-
tem of harmonic oscillators has the remarkable property
that, if it has an initial Boltzmann distribution, it relaxes to
its equilibrium Boltzmann distribution by means of a con-
tinuous sequence of Boltzmann distributions. It can be
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shown that the harmonic oscillator system is unique in this
respect.!®

Montroll and Shuler made a further significant advance
using the harmonic oscillator model by adapting it to study
the dynamics of the dissociation of diatomic molecules.!®
The simplifying feature of this model in a quantum-me-
chanical context is the fact that its energy levels are uni-
formly spaced. Montroll and Shuler studied the rate at
which such a physical system reaches a critical energy of
dissociation. In this way the analysis is framed in terms of
the theory of first passage times. In this much-cited paper,
the authors developed the theory of first passage times for
the master equation, demonstrating its applicability to a
physically interesting system. This work stimulated consid-
erable further work, both on the mathematical theory of
first passage times for master equations and on further
applications of the formalism to other problems in chemi-
cal kinetics.

Perhaps the area with which Elliott’s name is most closely
associated is the theory and application of random walks.
Elliott pioneered in the study of random walks on a lattice
structure as opposed to random walks in a continuum, which
had been the subject of most earlier investigations of the
subject. This work grew out of Elliott’s wartime study of
the kinetics of cascades,?’ but it was also intimately related
to his interests in solid state physics. A unifying thread
throughout his many papers on this subject is the use of
many of the same elegant mathematical tools he devel-
oped in his analyses of lattice dynamics. In one of his first
papers on the subject, he tried to study the excluded-vol-
ume problem in polymer physics by analyzing properties
of random walks with exclusions that only ranged over a
fixed number of steps.?! It is now known on general grounds
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that such a process remains Markovian and that one can-
not hope to recover the non-Markovian properties that are
characteristic of the excluded-volume random walk (e.g.,
the fact that the asymptotic mean square displacement of
such a random walk varies with the number of steps, n, as
n%*, where o # 1). Elliott’s first major contribution to the
general theory of random walks was made some time later
than his first essay into the area of the particular problems
posed by the excluded random walk.?? Most studies of
random walk properties in the literature of the physical
sciences had focused on random walks in a continuum.
No doubt influenced by his work on lattice dynamics, Elliott
developed the formalism necessary for the study of ran-
dom walks on a lattice. Many of the mathematical tools
developed in one context could profitably be carried over
almost unchanged to the other. In addition, in this early
work Elliott showed that Tauberian theorems for power
series and Laplace transforms greatly simplified the calcu-
lation of many asymptotic properties of random walks. This
work was taken up and extended somewhat later in Elliott’s
most cited paper.2 A number of results scattered in the
mathematical literature were derived in a unified manner
by using Tauberian methods, but also a significant new
model of lattice random walks was suggested in this paper
allowing the notion of such walks in continuous time. In
an earlier work, not directly related to random walks, Elliott
developed what was essentially a theory of lattice walks in
which the intervals between successive steps of the walk
were allowed to be random.?* However, since the distribu-
tion of these intervals took a specific form, the resulting
random walk retained the Markov property, and there could
be no basic difference between the properties of such ran-
dom walks at very long times and those in which the times
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between successive steps are constant. The so-called con-
tinuous-time random walk allowed for quite general distri-
butions of interjump times.

Development of the theory of the continuous-time ran-
dom walk was a purely theoretical one in Elliot’s most fre-
quently cited paper.? In another paper,? Harvey Scher
and Elliott demonstrated some of the potentialities inher-
ent in the formalism of the continuous-time random walk
by applying it to anomalous dispersion arising in the trans-
port of charge in amorphous solids. It was known at the
time that photoconductivity experiments in certain classes
of amorphous semiconductors, in which a pulse of light is
applied to one face of the solid and a measurement is
made of the carriers impinging on the second face, could
not be explained in terms of a simple diffusion model.
Scher and Montroll showed that the continuous-time ran-
dom walk model could reproduce all of the peculiar quali-
tative experimental features observed provided that the
probability density of interstep times has the property

y(t) ~ 1+ 0<ocl

at sufficiently large values of the time. This class of densi-
ties has the property of having no finite moments, which
induces qualitative differences between such transport processes
and ordinary diffusion processes since many of the mobile
carriers tend to remain stationary for long periods of time.
Somewhat later, Elliott, together with Michael Shlesinger,
used related ideas in an attempt to explain the so-called
Kohlrausch-Williams-Watt form for the dielectric relaxation
function that frequently can be fit to data taken on poly-
mers.26

Another area in which Elliott left an indelible mark, and
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which is indicative of his wide-ranging and fertile imagina-
tion, is in the field of traffic flow. As a consultant to Gen-
eral Motors in the 1950s and early 1960s, Elliott became
involved in and indeed was at the forefront of an effort to
bring a more scientific approach to the characterization
and control of traffic flow that had been initiated by Rob-
ert Herman. In a series of joint publications with Herman,
Gazis, Rothery, Potts, and Chandler, Elliott developed the
linear theory of car-following.2”-2° This theory relates the
reaction of a driver in a single lane of traffic to the car in
front of him. The simplest version of the theory is embod-
ied in a set of equations for the speeds, vj( 1), of a series of
drivers, where j=1, 2, 3, . . . . These equations have the
form

Uj(t) = l[vj.l(t" 7 - ’Uj(t— nl,

“where A is a control parameter and T is the time for a
driver to react to a change in relative speed. Using this
greatly oversimplified model, which assumes that changes
occur only in reaction to differences in relative speed, Elliott
and his collaborators were able to show that for certain
ranges in the two parameters, Aand T, a sufficiently long
stream of traffic would tend to destabilize, leading to rear-
end collisions.” This is indeed known to occur, for ex-
ample, in foggy conditions where reaction times tend to be
greater than normal. Later, Elliott extended the study of
car-following equations by introducing the notion of “ac-
celeration noise,” represented by a random term added to
the car-following equations written above. It was shown
that the conditions leading to an instability in a line of
cars also lead to an amplification of the noise. This work,
which stimulated a large amount of further research by the
traffic community, merited the award of the 1959 Lanchester
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Prize for Operations Research for Elliott, together with
Chandler, Gazis, Herman, Potts, and Rothery.

This brief account of some of Elliott’s work hardly be-
gins to do justice to his wide-ranging interests, which in-
cluded not only the physical sciences but also all aspects of
the world around him. For example, Elliott, together with
Robert Herman, wrote a paper on statistical properties of
the prices found in Sears Roebuck catalogs over a period
of years.?Y His interests in the history of science were leg-
endary, and indeed his last published paper was on the
ramifications and interconnections between scientific in-
vestigations initiated by nineteenth-century Viennese sci-
entists.3! Elliott also wrote papers on the denaturation of
DNA,?233 model building in the biological and behavioral
sciences,* as well as developing mathematical models to
quantify technological development.?*37 Few aspects of
life or science escaped Elliott’s attention. Elliott could be
characterized as a Renaissance man transplanted into the
twentieth century.
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