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MARSTON MORSE
March 24, 1890—June 22, 1977

BY EVERETT PITCHER

THE SINGLE MOST SIGNIFICANT contribution of Marston Morse
to mathematics and his undoubted claim to enduring
fame lie in the area of critical point theory, also known
because of the force and scope of his contribution as Morse
theory. His work in this field was initiated in the paper
(1925) and was expanded and elaborated in several subse-
quent papers, particularly (1928). He further developed and
organized the material in his Colloquium Lectures, pre-
sented before the American Mathematical Society in 1931
and published by the society in 1934 as vol. 18 in its series
Colloquium Publications (1934,3). It was paper (1928) that
was specifically cited when he was awarded the Bocher Prize
of the American Mathematical Society in 1933. He returned
to aspects and developments of the theory in papers and
books throughout his life.

Morse theory is concerned with a real valued function
on a topological space and relates two apparently quite dif-
ferent kinds of quantities. One is the algebraic topology of
the underlying space. This is exhibited in its homology groups,
or in its most elementary form by its Betti numbers. The
other is the set of critical points of the function, separated
into connected sets that are classified analytically and alge-
braically or by local homological properties. In the most
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elementary version, these are isolated nondegenerate criti-
cal points that are classified by index and are counted. The
relation in general is group theoretic but in the elementary
case, the Morse inequalitites relate the Betti numbers and
the numbers of critical points of various indices.

Harold Calvin Marston Morse was born on March 24,
1892, in Waterville, Maine, and died at his home in Princeton,
New Jersey, on June 22, 1977. He was the son of Howard
Calvin Morse and Phoebe Ella Marston, who were married
on January 22, 1890. His father was a realtor and was vice-
president of the Waterville Savings Bank. On his father’s
side his ancestry can be traced to Anthony Morse, who came
from Marlboro, Wiltshire, England to settle in Newbury (now
in Massachusetts) in 1635. On his mother’s side he is a
descendant of John Marston, who, came to Plymouth {(now
in Massachusetts) in 1637. He is a collateral relative of Samuel
F. B. Morse, who is a descendant of William Morse, brother
of Anthony, who came to the new world with Anthony.

Morse attended school in Waterville, first the public
schools from 1897 to 1906 and then the Coburn Classical
Institute from 1906 to 1910. He moved on to Colby Col-
lege, where he graduated summa cum laude in 1914. He was
a member of the Delta Kappa Epsilon fraternity.

He continued his education immediately at Harvard, where
he obtained his A.M. in 1915 and his Ph.D. in 1917 under
the direction of G. D. Birkhoff. The development of his
dissertation appeared in papers (1921,1) and (1921,2). He
had already published (1916) while a graduate student.

He was awarded a Sheldon Fellowship (a postdoctoral
traveling fellowship) at Harvard, but resigned from it in
order to volunteer in June 1917 for the army, in which he
served until June 1919. He was commissioned a second lieu-
tenant in the Coast Artillery on February 1, 1919, after
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training at the Saumur Artillery School. He was awarded
the Croix de Guerre with silver star for bravery under fire.

There is a tale that I have heard him tell more than
once about his passage to Europe. The location and desti-
nation of the ship were not revealed to the soldiers on
board. One could of course make personal observations
and calculations if one wished, as he did. The one missing
piece of information was provided by the ship’s officers, for
the time of local noon was announced daily. Morse was thus
able to complete his calculations.

He was married on June 20, 1922 to Celeste Phelps. They
had two children, Meroé and Dryden. This marriage ended
in divorce. Issues concerning the marriage and divorce were
resolved in such fashion that as a subsequent convert to
Catholicism he was able to marry within the church. He
was married to Louise Jefferys on June 13, 1940. They had
five children, Julia, William, Elizabeth, Peter, and Louise.
His wife outlived him by many years.

Initially, as in papers (1916, 1921,1-2) in the bibliogra-
phy that follows, he used the style Harold Marston Morse,
but beginning with paper (1925), he preferred the style
Marston Morse and was so known professionally through-
out his life.

Following the World War, Morse returned to Harvard as
a Benjamin Pierce Instructor in the academic year 1919-
20. He was at Cornell as an instructor in 1920-22 and as
assistant professor in 1922-25. He was associate professor at
Brown in 1925-26.

He again returned to Harvard in 1926 as assistant pro-
fessor and became associate professor in 1928 and profes-
sor in 1930.

Morse directed the Ph.D. theses of two men, B. F. Kimball
and D. E. Richmond, while at Cornell. At Harvard he di-
rected theses of ten men and one woman, namely, A. B.
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Brown, A. E. Currier, G. A. Hedlund, T. H. Kiang, S. S.
Cairns, S. B. Myers, Nancy Cole, Walter Leighton, Everett
Pitcher, Arthur Sard, and George B. van Schaack.

The last four named above all took their degrees in 1935.
We gave a farewell dinner for Morse at a Boston club after
our degrees were assured. We introduced him to the game
of “battleship” after dinner. He had never seen it and it was
analyzed empirically that evening.

The Institute for Advanced Study was founded in 1930
through a gift from Mr. Louis Bamberger and his sister
Mrs. Felix Fuld. The initial director was Abraham Flexner.
The staff of the new institute was gathered together in space
provided by Princeton University. The mathematics offices
were in Fine Hall along with the departmental offices. This
was the old Fine Hall adjoining Palmer Laboratory, which
has since absorbed it, not the newer Fine Hall which now
houses the university mathematics department. There was
one initial appointment of professor made in 1932, namely
Oswald Veblen. There were four appointments in mathematics
or mathematical physics made in 1933, namely James W.
Alexander, Albert Einstein, John von Neuman, and Hermann
Weyl. The next appointment in mathematics, effective in
1935 and the last for a number of years, was Marston Morse.
He remained at the institute for the rest of his life. His
nominal retirement in 1962 brought about no change in
his work.

As with many scientists, Morse’s career was interrupted
and somewhat diverted by World War II. He served as con-
sultant in the Office of the Chief of Ordnance of the Army.
The title represented merely a way of putting him on the
payroll, for it was a full time job. A major portion of the
work, which was close to my own at the same time and
which I used to see, was concerned mostly with terminal
ballistics, such questions as bomb damage and the power
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needed to achieve it. Notwithstanding, according to his col-
laborator Maurice Heins, then a professional in the Wash-
ington ordnance office, they worked evenings on mathemati-
cal problems of their own and Morse prepared drafts in
Princeton over the weekends. He received the Ordnance
Department Meritorous Service Award in 1944 and the Army-
Navy Certificate of Merit in 1948.

Morse was honored diversely and repeatedly. In addition
to the military honors and the Bocher prize already noted,
the honors included the following: Phi Beta Kappa at Colby,
the A.B. degree summa cum laude; Sigma Xi while at Cornell;
fellow of the American Academy of Arts and Science in
1929; fellow of the National Academy of Sciences in 1932;
election to the American Philosophical Society in 1936;
Chevalier in the French National Order of the Legion of
Honor in 1952; associate member of the French Academy
of Sciences; corresponding member of the Italian National
Academy Lincei. He received twenty honorary doctoral de-
grees and honors from the Polish and Romanian academies.
In 1964 he received the National Medal of Science. I doubt
that this list is exhaustive.

He held many positions that are a blend of honor and
service. He was president of the American Mathematical
Society in 1940-42, held an initial appointment to the Na-
tional Science Board in 1950-54, and was chairman of the
Division of Mathematics of the National Research Council
in 1950-52. He was instrumental in reconstituting the In-
ternational Mathematical Union in 1950 and served as vice-
president.

Morse was very much interested in the rapid and wide
propagation of his work. He took care that an announce-
ment of new results received prompt publication, as through
the Proceedings of the National Academy, and that results
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were reworked and reformulated beyond their initial publi-
cation in full in order to reach greater audiences.

He had many opportunities to lecture. These included
his Colloquium Lectures in 1931 as already noted, and his
Gibbs Lecture for the American Mathematical Society in
1952. He gave an invited address, titled “Calculus of Varia-
tions in the Large,” at the International Congress of Math-
ematicians in Zurich in 1932. See (1932). He gave a second
such address, titled “Recent Advances in Variational Theory
in the Large,” at the Congress in 1950 in Cambridge, Mas-
sachusetts.!

My contact with Morse during the writing of my thesis
consisted of only a few sessions. He assigned me reading,
consisting of chapters from his Colloquium Lectures (1934,3),
then in typescript. He handed me a problem together with
the statement of what he was sure was the first theorem. I
remember the lesson I received when I returned with a
body of results on the way to a solution. My work to that
point had involved characteristic roots of matrices and the
associated characteristic solutions. I had paused to consider
the details associated with using the solutions when there
were multiple roots. He told me that I should have gone
ahead toward the principal result, that “these things always
work out.”

Protfessor Morse was on leave during the semester when
I did the major portion of the real work on my thesis. He
was between marriages at the time and spent the semester
at the family home in Waterville, Maine, where the sole
permanent resident was his unmarried sister. At his invita-
tion I spent three days there, laying out my results for criti-
cal comment. Our recreational activity was chess, at which I
had acquired some technical proficiency in high school and
college. When I won the first game, nothing would do but
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that we play some more. When he won the fourth, that
settled the matter and we never played again.

Mathematics to Morse was a highly competitive enter-
prise. He had particular competitors in mind, individuals
or schools of thought. When he had a specific and possibly
new approach in mind, I have heard him say repeatedly
that “they” don’t understand the problem. “They” are try-
ing to do this when it should be that. Only he understood
the problem. It must be said that his position was frequently
justified.

He was conscious of priority in publication. At the con-
ference when I reported that I had carried out the line of
research for my thesis that he had proposed, he told me
that he had heard that someone else was onto the problem
and that we had better publish quickly. This was on a Friday
and I regarded his advice with such seriousness that I had a
draft of a joint paper in his hands by Monday for him to
offer to the Proceedings of the National Academy.

Morse needed an audience. As a consequence he sought
collaborators and assistants, a substantial function of these
individuals being to listen to his explanations of mathematical
situations as he perfected his understanding of them. He
had more than a dozen collaborators, mostly at the
postdoctoral level, some of whom did a great deal of the
writing of their joint work as it grew out of their discus-
sions. I was his first assistant at the institute.

Morse was also an accomplished musician. He was the
chapel organist while in college but his prinipal instrument
was the piano. He focused on classical music.

Raoul Bott has written a substantial article of apprecia-
tion of Marston Morse and his work, beginning with his
own reminiscences and those of three principal collabora-
tors, Maurice Heins, William Transue, and Stewart Cairns.2
In the treatment of the scientific work, Bott has selected
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eight topics, not thereby exhausting the scope of Morse’s
work. It is not my intention to duplicate the work of Bott,
not only because of limitations of space but also from lack
of capacity to do justice to some of the material. I propose
to write more briefly and only about Morse theory and sup-
porting work in the calculus of variations.

First let me state background definitions and facts for
critical point theory. The word “smooth” will be used to
mean “sufficiently differentiable” without being technically
precise. Let M be a compact smooth manifold of dimension
n with local coordinates (x) = (x,...,x") and let fbe a smooth
real-valued function. A critical point of f is a point p of M
such that at p

f/xi=0 i=1,..n
At such a point, distinguish the quadratic form
Qz) = A%
with summation on the repeated indices, with

a; = 2f/ x W
evaluated at p. In (1/2) Q one has an approximation near p
to the difference between fand f{p). The form Q has wo
invariants, known as index and nullity. When Q is reduced
by a non-singular linear change of variables to the form
8iwi2, with g; = +1 or 0, the index is the number of negative
coefficients and the nullity is the number of zero coeffi-
cients. The index is the dimension of a plane of maximum
dimension on which Q is negative except at the origin. The
nullity is the dimension of the plane in variables (z) = (z,...,z,)
such that azy; = 0 for all (y). The index and nullity can be
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expressed in terms of characteristic roots. The index is the
number of negative roots A which together with some set
(z) (0) satisty the system

az; = Az,
and the nullity in the number of zero roots A. In either case
roots are counted according to their multiplicities, that is,
the dimension of the associated set (z).

With this in mind suppose first that all critical points of f
are non-degenerate that is, of nullity zero. Then they are fi-
nite in number. Suppose that M, is the number of index .
Suppose that R, is the rank of the ith homology group H,(M).
Then Morse established the inequalities that bear his name,
to wit

My— M, + ... +(=1)"M, = R, — R/ + ... +(=1)"R .

The second inequality is essentially the Birkhoff mini-
max principle,® and Morse in (1925) credits it with being a
source of his idea for the inequalities. Poincaré was aware
of the equality when n = 2.

The Morse inequalities yield the weaker but very useful
inequalities

M, R.
Morse’s initial treatment in (1925) was of an even sim-

pler case than the one just described. The space M was a
bounded region in euclidean n-space and the boundary
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was the locus of the constant maximum value of the func-
tion, which is not a critical value. This simplifies the pre-
sentation in that the overlapping coordinate systems of a
compact manifold are unnecessary but this is only a techni-
cal simplification. Morse did the work for the case of the
compact manifold along with other extensions in (1934,3).
He initially worked with homology with coefficients mod 2,
but this again is only a technical simplification.

Morse then asked about the state of affairs in case de-
generate critical points are admitted. See (1927) for the
first mention and then (1934,2). With mild assumptions,
he showed that the critical points of f lie at a finite number
of critical values or levels. The function is constant on a
connected set of critical points. If ¢is a critical level, associ-
ate the relative homology groups H,(f,, f,), where a < ¢ < b
and a,b isolate ¢ as a critical level and f, = {x| fx a}. He
showed that the groups H,(f,, f,) are independent of a,b
and are determined in an arbitrary neighborhood of the
set of critical points at the level ¢

Morse established how to regard the set of critical points
at the level ¢ as equivalent to an idealized finite set of M,
non-degenerate critical points of index ¢ for each value of i.
With this convention the numbers M, of critical points con-
tinue to satisfy the Morse inequalities. The use of the equiva-
lence is justified at length in the book (1934,3).

The work was amplified in other directions. When the
function fis defined on a manifold with boundary, it is
sufficient for the theory that there be no critical point ly-
ing on the boundary. Then in the formulation of the in-
equalities some of the critical points of the function re-
stricted to the boundary should be counted, namely those
at which the function has negative outer normal derivative.
See (1934,2).

It should be observed that arguments that would now be
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handled by standard methods of algebraic topology were
more difficult for Morse because the tools of algebraic to-
pology were not sufficiently well developed and organized.
Algebraic topology was not axiomatized by Eilenberg and
Steenrod? until nearly twenty years after the paper (1925)
and more than ten years after the book (1934,3). The de-
tails of topological arguments in singular homology intrude
into arguments intrinsic to critical point theory in the ear-
lier work of Morse. The same is true of Vietoris homology
later.

In more modern terms, the critical point inequalities
depend on analysis of the nest of sets f as a increases in
terms of exact sequences on pairs of such sets. The local
interpretation near critical points or connected critical sets
of the groups or the numbers that appear depends substan-
tially on excision.

Although critical point theory in the setting of functions
on a manifold is a self-contained and finished theory, it was
only a stepping stone for Morse. One is led to speculate
whether he already had more inclusive plans when he wrote
the paper (1925). From the paper that won him the Bocher
prize (1928), he went on to consider the analogous prob-
lem in the calculus of variations. In fact his contributed ten
minute oral presentation to the American Mathematical
Society preceding (1925) and the first of such offerings
preceding (1928) were only a year apart.

Morse wrote many papers about critical point theory in
the context of the calculus of variations and devotes almost
all of his colloquium lectures (1934,3) to it. He was con-
cerned with the development of the calculus of variations
both per se and to make it available and amenable to his
theory. He considered a variety of extensions and abstrac-
tions of critical point theory as well.

The underlying space in a problem in the calculus of
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variations is a space of curves C. The function is a function
of the calculus of variations, for instance one of the form

J(C) = jc Fi,9)dt & =dx/dt

Here Fis positive homogeneous of degree [ in the sec-
ond variable, i.e. F(x,kr) = kF(x,r) when k > 0, so that the
value of the integral is independent of the parametrization
of the curve C. The usual complication of the calculus of
variations in parametric form must be resolved in that dif-
ferent parametrizations of the same curve must be identi-
fied or a standard parametrization introduced. In a major
part of the paper (1928), the curves join two fixed points
in the plane. It should be noted that the analytical details
of the parametric problem in the calculus of variations were
better developed in the plane case at the time than they
were in higher dimensionral spaces.

New invariants appear. Critical points of [ are the
extremals in the sense of the calculus of variations. The
index associated with an extremal in the case of fixed end
points that are not conjugate is equal to the number of
conjugate points of one end that lie on the extremal and
precede the other end. The degenerate case arises when
the two end points are conjugate.

With proper definition and interpretation, Morse showed
that the basic inequalities of critical point theory or their
topological extension to degenerate cases continue to hold
in the enlarged context.

He extended the theory to n-dimensional base spaces,
non-parametric as well as parametric problems, and to vari-
able end point problems in many papers, including (1929,1-
2, 1930,2) and in his colloquium lectures.

Periodic extremals, i.e. closed curves, to which Morse
devoted considerable attention [see (1929,3, 1931,2,
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1934,1,3)], introduced another kind of complication into
the theory. There is no intrinsic initial point on a closed
curve at which to begin the interval of a parameter in rep-
resenting the curve. In other terms, the parametric prob-
lem does not reduce globally to a non-parametric problem.
Even if a periodic extremal is intuitively isolated, it is ana-
lytically a member of a one parameter family. Extensive
modification of the theory is needed in order to formulate
the non-degenerate case and to establish the correct invari-
ants associated with the general case. Morse contributed
substantial ideas to this problem but was not entirely suc-
cessful.? 6

Morse was interested in significant examples to which
his theory applied. In the paper (1928), the example of the
number of normals to a manifold from an external point
appears. In (1934,3) he studied critical chords of a mani-
fold embedded in a euclidean space. The function is the
length of a curve joining two points of the manifold and
the critical points are the straight lines orthogonal to the
manifold at each end. However, the underlying space offers
complications. The chords are determined by their end points
but the underlying space is not the cartesian product of the
manifold with itself since the two orders of presenting the
ends of a chord yield the same chord. Rather it is the sym-
metric square of the manifold. The connectivities needed
are not those of the symmetric square but rather the rela-
tive connectivities because the points of the diagonal in the
formation of the symmetric square yield chords of zero length,
which minimize length but should not be interpreted as
orthogonal to the manifold, and so should be ignored.

Morse explored critical point theory in abstract settings,
particularly in (1937) and (1940). The theory in (1937)
applies to a real valued function f on a metric space for
which fis lower semicontinuous and the sets f, are compact.
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The object is to compare two sets of data. One is the nest of
sets f, as a increases, with attention to the topological changes
in f . The other is homotopy or homology properties local-
ized at points or sets associated with the level a that are
defined locally to be critical points. Vietoris homology was
an essential tool. The concepts and developments are of
sufficient complexity not readily to be explained in a para-
graph. However the abstract theory supplies an effective
and illuminating extension of the concrete theory that ap-
plies to smooth functions and to the functionals of the cal-
culus of variations.

In (1940), Morse carried the development further with
the introduction of the concept of span. A principal result,
roughly stated, is that one can ignore critical points associ-
ated with certain well defined “small” variations in the func-
tion f In fact, the problem of counting critical points may
be improved in the process. First, critical points, either ac-
tual or in the ideal equivalent of connected critical sets,
become finite in number. The easily manipulated and in-
terpreted critical point inequalities become available instead
of the less tractable group homomorphisms. Second, criti-
cal points to be ignored are excess critical points, those by
which M; exceeds R, Moreover, they occur in related fash-
ion in consecutive dimensions in such a way that neglecting
them does not alter the validity of the Morse inequalities.

Critical point theory has had a substantial influence on
further developments in mathematics. An outstanding ex-
ample is Stephen Smale’s proof’ of the Poincaré conjecture
in higher dimensions, which is heavily dependent on criti-
cal point theory. The conjecture states that a compact mani-
fold with the homotopy groups of a sphere is in fact a
sphere. Unfortunately, Smale’s proof seems not to be avail-
able in the dimension three considered by Poincaré.

Another such development is the work of Bott on the
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homotopy groups of the classical groups. For instance, if U,

is the unitary group in dimension n and O, is the orthogo-

nal group, then in appropriate ranges of k and = these

groups are periodic in the sense that , ,(U,) = ,(U,) and
k+8(0n)= k(On)

Marston Morse wrote 176 papers, four books, and sev-
eral sets of lecture notes. More than a third of the papers
and one of the books were joint works with second authors
of his choosing. More than forty of the papers and three of
the books are concerned with critical point theory or with
supporting material such as developments in the calculus
of variations that round out the local theory. The complete
list of his publications is appended to the paper already
cited.? There is a volume of selected works edited by Bott,8
containing thirty-five of his papers and a reprint of the
article including the complete list of papers.? There is a set
of volumes edited by C. C. Hsiung containing all of the
papers of Morse,? an article by Deane Montgomery, and a
reprint of Bott? with an abreviated list of papers.
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