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Born in New Castle, PA, Robbins entered Harvard University in 1931, at the age of 
16. Although his interests until then had been predominantly literary, he found himself 
increasingly attracted to mathematics through the influence of Marston Morse, who 
during many long conversations conveyed a vivid sense of the intellectual challenge of 
creative work in that field. Robbins received the A.B. summa cum laude in 1935, and his 
Ph.D. in 1938, both in mathematics, from Harvard. His thesis, in the field of combina-
torial topology and written under the supervision of Hassler Whitney, was published in 
1941. After graduation, Robbins worked for a year at the Institute for Advanced Study in 
Princeton, NJ, as Marston Morse’s assistant. He then spent the next three years at New 
York University as an instructor of mathematics. He became nationally known in 1941 as 
the coauthor, with Richard Courant, of the classic What is Mathematics? —an important 
book that, in many editions and translations, has influenced generations of mathematics 
students.

Herbert Robbins was widely recognized as one of the most 
creative and influential mathematical statisticians from 
1950 to the turn of the millennium. Entering the then- 
nascent field of statistics serendipitously in the 1940s, he 
showed daring originality in three major innovations, all of 
which occurred during 1951–1956:

(a) Compound statistical decision theory and empirical 
Bayes

(b) Sequential design of experiments and multi-armed 
bandits

(c) Stochastic approximation and recursive algorithms in 
stochastic optimization and control.

Although the importance of these contributions was 
immediately recognized by Robbins’ contemporaries in 
statistics and control engineering, their full impacts were not realized until the big-data 
era in science and technology that arose after his death.
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Robbins enlisted in the Navy in 1941 and was demobilized four years later as a lieu-
tenant commander. His interest in probability theory and mathematical statistics began 
during the war and was itself something of a chance phenomenon, arising from an over-
heard conversation between two senior naval officers about the effect of random scatter 
on bomb impacts (Page 1984, pp. 8–10). Because he lacked the appropriate security 
clearance, Robbins was prevented from pursuing the officers’ problem during his service. 
Nevertheless, his eventual work on this problem led to fundamental papers in the field 
of geometric probability, published in the Annals of Mathematical Statistics in 1944 and 
1945.

In 1946, Harold Hotelling was setting up a department of mathematical statistics at the 
University of North Carolina at Chapel Hill. Having read these two papers and greatly 
impressed by Robbins’ mathematical skills, Hotelling called Robbins and offered him 
the position of associate professor in the new department. Surprised by the phone call 
because he “knew nothing about statistics,” Robbins replied at first that he could not 
be the person whom the caller sought, and he offered to get out the American Mathe-
matical Society directory to find the actual Robbins. Hotelling insisted that there was no 
mistake, as the position was to teach “measure theory, probability, analytic methods, etc., 
to the department’s graduate students” (Page 1984, p. 11). Robbins accepted the position 
and spent the next six years at Chapel Hill.

After a Guggenheim Fellowship at the Institute for Advanced Study during 1952–1953, 
Robbins moved from Chapel Hill to Columbia University as professor and chairman of 
the Department of Mathematical Statistics. With the exception of 1965–1968, spent 
between Minnesota, Purdue, Berkeley, and Michigan, Robbins remained at Columbia 
until his retirement at the age of 70, when he became Higgins Professor Emeritus of 
Mathematical Statistics. Robbins had been president of the Institute of Mathematical 
Statistics in 1965–1966, Rietz Lecturer in 1963, Wald Lecturer in 1969, and Neyman 
Lecturer in 1982.

We have reviewed Robbins’ influential research in Lai and Sigmund (1985, 1986). The 
Annals of Statistics published a memorial section on Robbins’ major contributions to 
statistics in April 2003, consisting of:
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His publications and writings

An invited paper, “Robbins, Empirical Bayes, and Microarrays,” by Bradley Efron

Another invited paper, “Compound Decision Theory and Empirical Bayes Methods,” by 
Cun-hui Zhang

Siegmund’s invited paper, “Herbert Robbins and Sequential Analysis” 

Lai’s invited paper, “Stochastic Approximation.” 

These invited papers complemented Lai and Siegmund (1985)—in which we highlighted 
Robbins’ work and its impact up to 1984—especially regarding the important develop-
ments, many of which occurred in the period 1990–2000, in his specialty areas. 

Below we focus on two of the research areas, mentioned previously, that Robbins created 
in 1951–1956, when he was relatively new to the field of statistics. These innovations, 
which Robbins, his students, and subsequent generations of statistical scientists then 
further explored, have remained vibrant to this day.

Sequential experimentation and multi-armed bandits

We begin with some highlights of the paper (Robbins 1952), in which Robbins formu-
lated new ways to apply sequential methods to the design and analysis of experiments. 
He noted that because statisticians were typically “consulted, if at all, only after the 
experiment was over,” and also because of the “mathematical difficulty of working with 
anything but a fixed number of independent random variables,” until recently the size 
and composition of the sample had been “completely determined” before the sampling 
experiment. This situation changed during World War II, when a double sampling 
inspection was introduced at Bell Labs and Abraham Wald developed his sequential 
probability ratio test.

Although these developments had “freed statistics from the restriction to samples of fixed 
size,” Robbins argued that sequential experimentation could lead to other efficiencies 
as well. In particular, he introduced the k-armed bandit problem in the case k = 2. The 
name derives from an imagined slot machine with k ≥ 2 arms. When an arm is pulled, 
the player wins a random reward. For each arm j, there is an unknown probability distri-
bution Πj, with mean µj, of the reward; and the player’s problem is to choose N pulls on 
the k arms so as to maximize E(SN), where SN = y1+!+ yN  and yn is the reward of 
the nth pull.
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For k = 2, Robbins (1952) showed how sequential sampling can give an asymptotically 
optimal solution such that limN→∞N −1E SN( )=max µ1,µ2( ) . The solution is an 
adaptive sampling scheme that samples from the apparent leader (with the larger sample 
mean), except at a prescribed sparse set of times during which one has to sample from the 
arm that has been sampled less frequently. This simple strategy soon became a prototype 
of a class of stochastic adaptive control rules, called “certainty equivalence control with 
forcing” in the control engineering literature; see Chapter 12 of Kumar and Varaiya 
(1986).

The multi-armed bandit problem has become a classic problem in the fields of stochastic 
control, reinforcement learning, and artificial intelligence, as it addresses the dilemma 
between exploration (to generate information about unknown system parameters) and 
exploitation (to choose inputs that attempt to maximize the expected rewards from the 
outputs). Major advances in this problem were made by Gittins (1979), Whittle (1980), 
Lai and Robbins (1985), Lai (1987), and Anantharam, Varaiya, and Walrand (1987), 
culminating in what is now commonly known in the engineering literature as the UCB 
(upper confidence bound) rule with logarithmic regret; see Choi, Kim, and Lai (2018).

Whereas these advances in the 1980s represented achievements in classical bandit theory, 
which is referred to as “context-free multi-armed bandits” in reinforcement learning, the 
main theme of Choi, Kim, and Lai (2018) is “contextual” multi-armed bandit theory, 
which provides a mathematical framework in which to guide dynamic data-driven 
decisions for personalized recommendation technology. “Personalized” or “individu-
alized” decisions are those that involve the individual’s characteristics as covariates in 
arm selection. An example is adaptive-enrichment designs of confirmatory clinical trials; 
“enrichment” refers to choosing the “right” patient subgroup for the new treatment. 

In their commentary on precision medicine, Collins and Varmus (2015) argued that 
the time was ripe for its broad application because of recent development of large-scale 
biologic databases (such as the human genome sequence); powerful methods using 
proteomics, metabolomics, cellular arrays, and even mobile health technology to char-
acterize patients; and computational and statistical tools for analyzing massive amounts 
of data. They pointed out the need for “more clinical trials with novel designs conducted 
in adult and pediatric patients and more reliable methods for preclinical testing.” After a 
review of context-free bandit theory, Choi, Kim, and Lai (2018) describe recent advances 
for contextual bandits, giving a complete parallel to the context-free theory. They also 
describe applications of this theory to personalized recommendation technology. In 
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particular, for web-based advertising, maximizing the click-through rate (CTR) is the 
corresponding contextual bandit problem, and it is an active area of research for person-
alized recommender systems in web services. These recommender systems strive to adapt 
services (such as news articles and advertisements) to individual users by exploiting both 
content and user information. Hence the vast potential of sequential experimentation 
for efficient design that Robbins (1952) envisioned in 1952 has been realized in the new 
millennium.

Compound decisions and empirical Bayes

By using the framework of game theory developed by John von Neumann, Wald intro-
duced statistical decision theory in the 1940s to generalize the Neyman-Pearson opti-
mality theory of hypothesis testing. Given that the minimax theorem was one of the 
major results of game theory, the minimax property also became an essential element 
of admissible statistical decision rules. But in 1951, Robbins showed that “the minimax 
solution may not be the best, since there may exist solutions which are asymptoti-
cally subminimax” for the compound statistical decision problem of testing k simple 
hypotheses for large k, in which the loss function for the compound problem is the sum 
of the component losses (Robbins 1951).

Robbins’ basic insight was that by allowing the decision rules for the individual 
component problems to depend on the observations from the other problems, one might 
be able to reduce the total risk. In 1956, he considered k similar statistical decision 
problems in a Bayesian context, with density function f ⋅;θi( )  for the ith problem and 
with squared error loss for estimating θi and a common prior distribution G for the θi . 
Letting dG y( )  be the Bayes decision rule when Yi = y is observed, he noted in Robbins 
(1956) the possibility of estimating dG  consistently from Y1,…,Yk . Specifically, the k 
structurally similar problems can be pooled to provide information about unspecified 
hyperparameters in the prior distribution, thereby yielding Ĝ  and the decision rules 
d
Ĝ
Yi( )  for the independent problems. In particular, Robbins (1956) considered Poisson 

Yi
 with mean θi , as in the case of the number of accidents by the ith driver in a sample 

of size n (in a given year) from a population of drivers, with distribution G for the acci-
dent-proneness parameter θ. In this case, the Bayes estimate (with respect to squared 
error loss) of θi , when Yi = y is observed is
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dG y( )= y+1( ) g y+1( ) / g y( ),  y = 0,1,…,

where
g y( )= θ

0

∞

∫
y

exp −θ( )dG θ( ) / y !( ).

Using
ĝ j( )= n−1 I{Yi= j }

i=1

n

∑

to replace g(j) above yields the empirical Bayes estimate dĜ ( y) .

Compound decision theory and empirical Bayes (EB) methodology were acclaimed by 
Neyman (1962) as “two breakthroughs in the theory of statistical decision making.” 
Subsequently, Robbins (1964) provided a general framework for the empirical Bayes 
approach to statistical decision problems in which “the same decision problem presents 
itself repeatedly and independently with a fixed but unknown a priori distribution of 
the parameter.” In this framework, the decision problem can be hypothesis testing or 
estimation.

In 2003, Efron described EB as “an idea of great practical potential” that is “realized 
in the analysis of microarrays—a new biogenetic technology for the simultaneous 
measurement of thousands of gene-expression levels.” He concluded that modern science 
is “poised for an avalanche of empirical Bayes applications” (Efron 2003). Efron further 
developed the EB approach to large-scale simultaneous hypothesis testing in Efron 
(2004 and 2007), in which he introduced the “local false discovery rate” to connect 
the EB approach to FDR (false discovery rate) control in simultaneous testing of many 
hypotheses. Chen, Heyse, and Lai (2018) use these ideas, together with compound 
decision theory, to address multiplicity issues in the evaluation of medical-product 
safety. Zhang (2003) gave a list of references on the applications of EB methods to 
“numerous real-life problems,” among which were insurance issues. Lai, Su, and Sun 
(2014) described fundamental applications of EB methods, based on Robbins’ ideas, to 
actuarial science; they started with credibility theory (specifically, setting the premium 
of an insurance policy), and presented recent advances in evolutionary credibility theory 
(which included time-series effects of the underlying latent factors). Lai and Xing (2018) 
provide further applications of risk analytics to finance and insurance.

In his seminal 1951 paper on asymptotically subminimax compound decision theory on 
n independent normal observations xi with unknown means θi and known common 
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variance 1, Robbins said: “x1 could be an observation on a butterfly in Ecuador, x2 on an 
oyster in Maryland, x3 the temperature of a star, and so on, all observations being taken 
at different times.” The compound decision problem is to determine, “on the basis of the 
observed values x1,…,xn , for every i=1,…,n , whether θi = 1 or −1, in such a way as 
to minimize the expected total number of errors.” This illustrative example led many of 
Robbins’ contemporaries to regard compound decision theory as elegant but useless, as 
they could not envision such questions being asked in practice. In those days, they did 
not have microarray technology, flow cytometry, fMRI imaging, or electronic marketing. 
Robbins was far ahead of his time when he introduced compound decision theory, EB, 
and adaptive treatment selection in 1951, 1956, and 1952, respectively. As Zhang (2003) 
has noted, Robbins’ contributions, “characterized by his great originality and power” and 
his collaboration with successive generations of younger statistical scientists (including 
ourselves and Zhang), have had resounding impacts not only on statistical methodology 
but also throughout modern science and technology.
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