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One of my earliest memories is of arranging pebbles in the shadow of a
giant saguaro . . . I think I have always had a basic liking for the natural
numbers.  To me they are the one real thing.  We can conceive of a
chemistry which is different from ours, or a biology, but we cannot con-
ceive of a different mathematics of numbers.  What is proved about num-
bers will be a fact in any universe.

(From The Autobiography of Julia Robinson by Constance Reid)

AS A MATHEMATICIAN, Julia Bowman Robinson will long
be remembered for her many important contributions

to questions of algorithmic solvability and unsolvability of
mathematical problems, in particular for her part in the
negative solution of Hilbert’s “Tenth Problem.”  And, de-
spite her expressed wish, she will be remembered as the
first woman to be elected to the mathematical section of
the National Academy of Sciences, as well as the first woman
to be president of the American Mathematical Society.  By
those who knew her personally she will be remembered for
her rare qualities of idealism, integrity, modesty, openness,
and generosity, and for her appreciation and encourage-
ment of the work of others.

JULIA  BOWMAN ROBINSON

December 8, 1919–July 30, 1985

B Y  S O L O M O N  F E F E R M A N
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She was born Julia Bowman on December 8, 1919, in St.
Louis, Missouri, the second of two daughters, to Helen
Hall Bowman and Ralph Bowers Bowman.  Her mother
died when she was two years old, and her father retired
not long after, having lost interest in his machine tool and
equipment business.  Ralph Bowman remarried a few years
later to Edenia Kridelbaugh, and the family moved first to
Arizona and then to San Diego; a third daughter, Billie,
joined Constance and Julia a few years later.  As a child,
Julia was said to be stubborn and slow to talk, but she
exhibited a precocious liking for the natural numbers, as
evidenced by her earliest reported memories.

At the age of nine, Julia was stricken first with scarlet
fever, and then with rheumatic fever, which, after several
relapses, forced her to spend a year in bed.  As a result,
she lost more than two years of school, and there were
more serious, lifelong consequences for her health.

Julia returned to school after a year of tutoring, during
which she went through the state syllabuses for the fifth,
sixth, seventh, and eighth grades.  Shy and out of the swim
socially, she took to her studies and found herself espe-
cially attracted to mathematics.  Moving on in high school
through the standard courses of algebra, trigonometry, and
plane and solid geometry, she stood out as the only girl in
the advanced mathematics and physics courses.  She graduated
from high school with awards in all the sciences (except
chemistry, which she had not taken) and a special medal
(the Bausch-Lomb) for all-round excellence in mathemat-
ics and science.

Following in the footsteps of her older sister Constance,
Julia entered San Diego State College (now University) in
1936.  It was common for students there to attend State for
a couple of years and then transfer to UCLA or the Univer-
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sity of California at Berkeley; those who remained gener-
ally obtained teaching credentials.  Julia majored in math-
ematics because she liked it and was good at it, but she
had no idea that there was such a thing as being a math-
ematician.  When she came across the book Men of Math-
ematics by E. T. Bell, she became very excited at the intel-
lectual vistas that opened up and she was determined to
transfer to UCLA or Berkeley to learn some real math-
ematics.  Finances were strained due to the suicide in 1937
of her father, whose retirement savings had been wiped
out by the 1929 crash and the subsequent depression.  However,
with the assistance of an aunt and her older sister, in 1939
she managed finally to transfer to U.C.B. as a senior.  It
happened to be a particularly fortuitous time to enter the
mathematics program at Berkeley, as the noted chairman,
Griffith C. Evans, had been building up the department
with outstanding researchers and teachers.  In her first
year at Berkeley, Julia took five mathematics courses, in-
cluding one in number theory taught by Raphael M. Robinson.
She was extremely happy at Berkeley, finding herself among
so many students and faculty excited by and talking about
mathematics.

Julia received her A.B. degree in 1940 and, at the urging
of Raphael Robinson, continued on with graduate studies
at Berkeley.  She also managed to obtain a part-time posi-
tion as an assistant to Professor Jerzy Neyman for his work
on statistics.  During this period, Julia and Raphael devel-
oped a personal friendship that blossomed into a court-
ship, and they married in December 1941.  The relation-
ship with Raphael was also to have major significance for
Julia’s development as a mathematician; he was an excel-
lent teacher, both in class and in one-to-one discussions,
and he had a deep knowledge of many parts of classical
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and modern mathematics.  Julia counted Raphael Robinson
as one of her two most important scientific influences, the
second one being the famous logician Alfred Tarski, who
joined the Berkeley faculty in 1942.

Unfortunately, her marriage to a faculty member was to
limit Julia’s employment opportunities in Berkeley, since
there was at that time (and for many years after) a nepo-
tism rule in the U.C. system that prevented members of
the same family from working in the same department.
This did not affect her at first, since she had already re-
ceived a teaching assistantship in mathematics for the sec-
ond year of her graduate studies.  Julia had wanted to
teach calculus, but Jerzy Neyman pushed her to teach sta-
tistics, which she didn’t like as much.  The connection was
useful, though, as Neyman was to employ her in his “Stat
Lab” later during the war, and her work there would result
in her first published paper.

From the beginning of their marriage, the Robinsons
wanted and expected to have a family, and though Julia
continued to audit mathematics courses, her preoccupa-
tions shifted more toward their home life.  She became
pregnant but, unfortunately, lost the baby a few months
later; then, shortly afterward, on a visit home to San Di-
ego, she contracted viral pneumonia.  A doctor there was
the first to recognize that there was substantial scar tissue
in the mitral valve of the heart, a residue of her early bout
with rheumatic fever, and he strongly advised her against
becoming pregnant.  He also told her mother in private
that Julia would be lucky to live to age forty.

Julia was deeply depressed for a long time over not be-
ing able to have children, but, encouraged by Raphael, she
returned eventually to the rewards of mathematics.  She
attended the first seminar that Tarski conducted at Berke-
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ley and soon provided an ingenious solution to a definability
problem in number theory that had been posed by Tarski’s
former student Andrzej Mostowski.  The question was whether
addition can be defined in terms of the successor opera-
tion and multiplication.  Tarski was impressed by her posi-
tive solution to this problem and viewed it as suitable the-
sis material.  It, and other similar work, was eventually to
be incorporated as a relatively minor part of her thesis, the
major part of which is to be described below.

During the immediate postwar period, Tarski was build-
ing a school in mathematical logic at Berkeley.  One of the
two most important logicians of the 20th century (the other
being Kurt Gödel), he was a very systematic yet intense and
charismatic lecturer with extensive research programs and
a wealth of good problems to match.  Tarski’s main sub-
jects of interest were metamathematics, set theory, model
theory, universal (abstract) algebra, and algebraic theory.
During a period of thirty-odd years following the war, he
directed the doctoral work of a series of outstanding stu-
dents, of whom Julia Robinson was one of the first.

Except for two papers, all of Robinson’s work is con-
cerned with the effective solvability and unsolvability of vari-
ous mathematical problems, as well as with the character-
ization of various notions of effectiveness.  The exceptions
were her very first paper (1948), on a topic in sequential
analysis, which came out of her work in the U.C.B. Stat
Lab during World War II, and a paper (1951) on the theory
of games.  The latter resulted from her work during a year
(1949–50) spent at the RAND Corporation in Santa Monica,
where game theory was at the time a topic of intense inves-
tigation.  Robinson succeeded there in solving in the affir-
mative a “prize” problem that had been posed by George
W. Brown, whether a certain iterative method of play al-
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ways leads to the value of a two-person zero-sum game;
that result has been considered a very significant contribu-
tion to the subject.

To return to the main topic of Robinson’s work:  the
informal idea of effective solvability (or decidability) of a class
of mathematical problems of the form—Is P(a) true? (where
a ranges over a given set S)—is that provided by an algo-
rithm, i.e., a completely determined finitely described pro-
cedure which, given any element (or “input”), leads step-
by-step to a definite conclusion as to the truth or falsity of
the predicate P(a).  Similarly an operation (function) f on
elements of S to S is said to be effectively computable if there
is an algorithm which, given any element a ∈S as argu-
ment, leads to the value (or “output”) b of f(a), for which
f(a) = b.  (We here use ∈ for the membership relation and
read “a in S” for “a ∈S”.)  The elements of the set S must
themselves be presented in finite form as a finite sequence
of symbols.  Using any one of the standard systems of rep-
resentation, these notions thus apply to predicates and op-
erations on the set Z of integers and its subsets N+ of positive
integers and N of non-negative integers (natural numbers), i.e.,
to Z = {. . . ,-3,-2,-1,0,1,2,3, . . .}, N+ = {1,2,3,. . .} and N =
{0,1,2,3,. . .}.  The notions extend directly to the set Q of
all rational numbers, i.e., all fractions n/m with n,m ∈ Z
and m ≠ 0.  Furthermore, if A = {αl,. . .,αk} is any finite
alphabet, we can apply the notions of effectiveness to predicates
and functions on the set S = W(A) of all finite expressions
(or “words”) αi1

  . . . αim
  with letters from A.  Finally, if

effectiveness is meaningful for predicates and operations
on S, the same holds for the set Sn of all n-tuples (al,. . .,an)
where we deal with n-ary relations P(al,. . .,an) and opera-
tions f(al,. . .,an) = b.

It should be noted that the notion of effectiveness for
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predicates and relations can be reduced to that for opera-
tions, using distinct elements tl,t0∈S (e.g., l and 0) to rep-
resent truth and falsity, respectively.  By the characteristic
function of P (an n-ary relation between elements of S), is
meant the operation fp defined on Sn by fp(al,. . .,an) = tl if
P(al, . . . ,an) is true and fp(al,. . .,an) = t0 otherwise.  Then,
clearly, P is effectively decidable if and only if fp is effec-
tively computable.

Since the beginning of abstract mathematics in antiq-
uity, many algorithms have been presented for various spe-
cific mathematical problems and operations.  In each case
it was verified that the algorithm does the required work
by following through its application to see that it gives the
appropriate answer for an arbitrarily given argument as
input.  No general notion of effectiveness was required for
such verifications, i.e., the informal conception of effec-
tiveness sufficed.  However, if one is to show that a prob-
lem of the form—Is P(a) true? (for a ∈S)—is effectively
undecidable, i.e., that no possible algorithm can serve to effec-
tively determine the truth or falsity of P(a) for each a ∈S,
we must have a completely general and precise definition
of effective decidability, so that its extent can be sharply
delimited.  The same applies to the task of showing that a
given operation f is not effectively computable.  By the re-
mark above, once the general notion of effectively com-
putable function is made precise, the same applies to that
of effectively decidable predicate or relation.

Several independent proposals for a general, mathematically
precise definition of effectively computable function on
the natural numbers N (or N+) were made in the 1930s,
and before long all were shown to be equivalent.  Among
the first was that made by Alonzo Church who advanced,
for this, calculability in a certain restricted symbolism for
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functions called the  λ-calculus.  Independently, and around
the same time (using a suggestion of Jacques Herbrand),
Kurt Gödel proposed the class of general recursive functions
as a candidate for the algorithmically computable func-
tions.  Before this, in his famous 1931 paper on the incom-
pleteness of Principia Mathematica and other formal axiom-
atic systems concerning the natural numbers, Gödel had
made heavy use of a subclass of these, called the primitive
recursive functions.  In 1936, Church’s student Stephen C.
Kleene proved the equivalence of the  λ-definable and general
recursive functions; in the same year Church first proposed
in print to identify the algorithmically computable func-
tions with either one of these (coextensive) classes, and
this proposal was subsequently dubbed Church’s Thesis.  Unaware
of the preceding work, Alan Turing in 1937 proposed a
notion of mechanically computable functions, where the
calculations are carried out by an idealized machine (sub-
sequently dubbed Turing machines) without limitation on
storage or time.  When Turing learned of Church’s Thesis,
he established the equivalence of the λ-calculable func-
tions with his own mechanically computable functions.  All
these (and related) contributions bolstered the arguments
for Church’s Thesis, which has since gained practically universal
acceptance; in particular, Turing’s notion is considered to
be one of the most faithful to the informal concept of a
step-by-step finite mechanical procedure.  His definition
also extends directly to that of effective computability on
any set of expressions generated from a finite alphabet.

The systematic development of the theory of effectively
computable functions, assuming Church’s Thesis, was ini-
tially due to Kleene; in particular, working with the Herbrand-
Gödel definition, he showed how the general recursive func-
tions can be obtained from the primitive recursive functions,
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themselves generated by some relatively perspicuous sche-
mata, by the adjunction of one new scheme embodying the
construction “do . . . until . . .”  It became convenient to
work with Kleene’s schemata as a means for verifying vari-
ous properties of the effectively computable functions.  As
a result of this, the subject of effective computability (both
for positive and negative results) came to be called recur-
sive function theory.  One mildly complicating feature, though,
of Kleene’s schemata is that they pass through functions of
arbitrarily many arguments in order even to obtain the
functions of one argument (the unary functions).  The
problem thus arose of finding a simple set of schemata for
generating the unary general recursive functions.  An im-
portant step in this direction had been made by Raphael
Robinson, who obtained a simple set of schemata for the
unary primitive recursive functions; he suggested to Julia
the problem of extending this to a characterization of the
unary general recursive functions.  After several years’ work,
she succeeded in obtaining an elegant solution in 1948,
which was published in a paper (1950).  She returned to
this problem in a later paper (1968, 1) with an even more
elegant characterization of the class of unary general re-
cursive functions as the least class containing the zero and
successor functions and closed under composition and a
new special scheme of general recursion.  Related to these
papers is her note (1955) on primitive recursive functions.
Somewhat in the same spirit, but for other classes of func-
tions or sets, are her papers (1967; 1969, 1; 1973, 2) (in
the last, within an axiomatic setting).  Of these, one (1967)
is noteworthy for its beautifully simple and direct exposi-
tion of the theory of hyperarithmetical functions, a class
originally obtained by a complicated transfinite iteration
of the “jump” process associated with general recursion in
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a relativized form.  These papers comprise one of three
main areas of Robinson’s contributions to the theory of
effective computability.

For an explanation of Julia Robinson’s dissertation work
with Tarski and her later work on the Diophantine prob-
lem, we consider two further notions from recursive func-
tion theory.  Suppose S is a set to which the notion of
effectively computable (alias general recursive) function is
applicable, either directly or by an effective enumeration
of S by N.  A subset D of S is said to be decidable (or recur-
sive) if its characteristic function fD on S is effectively de-
cidable (or recurvsive) if its characteristic function fD on S
is effectively computable; in other words, D is decidable if
its membership problem is effectively decidable.  A subset
E of S is said to be effectively (or recursively) enumerable if it is
the range of a recursive function f from N to S, i.e., if E is
the set of values f(0),. . .,f(n),. . . for n ∈N; for simplicity,
the empty set is also counted as being effectively enumer-
able.  It is not hard to see that D is decidable if and only if
both D and its complement S – D are effectively enumer-
able.

Of special interest in modern logic are the sets S = WFF(L)
of well-formed formulas in a formal Language L, which are
special kinds of expressions generated from a finite sym-
bolism.  In the first-order predicate calculus these are gen-
erated from one or more basic relations R(xl,. . .,xn) by
closure under ∧(“and”), ∨ (“or”), ¬ (“not”), → (“if . . .
then . . .”), ∀x (“for all x, . . .”), and ∃x (“there exists x,. .
.”).  In the following we consider the special case where
the basic relations are x = y, x + y = z, and x · y = z.  We
define x ≠ y by ¬ (x = y), x = 0 by x + x = x, x = 1 by (x · x =
x)∧ (x ≠ 0), etc.  In this language we can speak of first-
order properties of the structures of the natural numbers
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N, the integers Z, as well as of the rational numbers Q , the
real numbers R, and the complex numbers C.

A formula A of L, such as  ∃x  ∀y (x · y = y), is said to be
closed if it contains no free variables.  For any mathematical
structure (M,Rl,. . .,Rm) in which the basic relations of S
are interpreted in a definite way (with x = y interpreted as
equality) each closed formula A of S has a definite truth
value in M.  By the theory of M, in symbols Th(M,Rl,. . .,Rm),
is meant the set T of closed well-formed formulas which
are true in M under this interpretation.  This theory is said
to be decidable if T is a decidable subset of S, otherwise
undecidable.  One of the basic consequences of the work of
Gödel and Church is that the theory of the natural num-
ber systems, Th(N,+,·) is undecidable, and the same ap-
plies to Th(Z,+,·) since N is definable in the latter theory
by:  x ∈ N if and only if  ∃y  ∃z  ∃u  ∃w (x = y2 + z2 + u2 + w2)
(according to a famous theorem of Lagrange).  On the
other hand, it was known from earlier work of M. Presburger
(1930) that Th(Z,+) and Th(N,+) are decidable; note that
the product relation x ·y = z is not included in these struc-
tures.

One of Tarski’s main long-term programs, beginning in
the 1930s in Warsaw and continuing over into his Berkeley
period, was the systematic investigation of the decision prob-
lem for first-order theories associated with mathematical
structures met in practice.  Tarski’s most famous result in
this direction, first announced in 1931 but not published
in full until 1948, was his decision procedure for the el-
ementary (first-order) theory of real numbers, i.e., Th(R,+,·);
moreover, this was shown to be the same as the theory of
any real-closed field (M,+,·), including the countable field
of real algebraic numbers, i.e., the real number solutions
of polynomial equations over Q.  Tarski had also shown



14 B I O G R A P H I C A L  M E M O I R S

(what was easier) that the elementary theory of the com-
plex number field Th(C,+,·) is decidable and that any alge-
braically closed field (M,+,·) of characteristic zero has the
same theory.

This is where things stood when Julia Robinson took up,
at Tarski’s suggestion (via Raphael Robinson), the ques-
tion of definability of the set N in Th(Q,+,·).  The status of
the decision problem for the theory of the field of rational
numbers was at that point the big unknown between the
undecidable theory of integers Th(Z,+,·) and the decidable
theory of real numbers Th(R,+,·).  Robinson’s exceptional
achievement in her thesis work was to show that the set Z
(and hence N) is first-order definable in Th(Q ,+,·), and
hence that the latter theory is also undecidable.  It was far
from obvious how to do this.  Her first breakthrough came
with the realization that if r is a rational number and r is
expressed as a quotient of integers a/b in lowest terms,
then b is odd if and only if (∃x1  ∃x2  ∃x3)(7r2 + 2 = x1

2 + x2
2

+ x3
2) is true in Q.  Thus one ternary quadratic form can

be used to “eliminate” 2 as a factor from the denominator
of a rational number.  Robinson then found other ternary
quadratic forms to eliminate in turn all the other prime
numbers from denominators.  The final problem that she
overcame was to combine these infinitely many different
quadratic forms into a finitely described class of forms which
would succeed in eliminating all (and only) denominators
of fractions in lowest terms and thus in characterizing the
integers Z as exactly the rationals satisfying a first-order
property in (Q ,+,·).  Among the important consequences
of this deep and difficult work were the result that the
axiomatic theory of fields is undecidable; this is a corollary
using some general results of Tarski on undecidable theo-
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ries.  Robinson received her Ph.D. in 1948, and the results
of the thesis were published soon after in the paper (1949).

In a later paper (1959, 1), Robinson extended her thesis
work to algebraic fields (F,+,·) of finite degree over the
rationals (subfields of the complex numbers C).  Here she
showed that N is definable in the ring (A,+,·) of algebraic
integers of F and that A is in turn definable in the field F,
so that both Th(A,+,·) and Th(F,+,·) are undecidable.  The
papers (1962, 2) and (1965) contain further related results
of interest.

We can now finally return to the third main area of
Robinson’s mathematical preoccupations, that of existen-
tial definability in arithmetic, also called Diophantine definability.
The background to this problem is as follows.

In the third century A.D., the Greek mathematician
Diophantus worked on solving equations with arbitrary in-
teger coefficients, for integer values.  The general linear
Diophantine equation in two variables is ax + by = c where
a,b,c are arbitrarily given integers.  An algorithm to deter-
mine whether or not there are x,y ∈ A satisfying ax + by = c
makes use of an algorithm, due to Euclid, for finding the
greatest common divisor of two integers:  provided a ≠ 0 or
b ≠ 0, the equation has a solution x,y ∈  Z if and only if the
greatest common divisor d of a and b is a divisor of c ; then
if there is a solution at all, we have a further algorithm for
finding all possible solutions.  Another classical algorithm,
to find all possible x,y,z ∈ N+ satisfying x2 + y2 = z2, connects
number theory with geometry; the solutions of this equa-
tions such as 3,4,5 and 5,12,13, provide all possible right
triangles with each side of integer length.  The famous
Fermat problem concerns the existence of integer solu-
tions, if any, of xm + ym = zm, with x,y,z ≠ 0 and m > 2.

The general Diophantine equation in n variables xl,. .
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.,xn is given by an equation P1(xl,. . .,xn) = P2(xl,. . .,xn)
where P1, P2 are polynomials with integer coefficients.  By
subtraction this can always be brought to the form P(xl,. .
.,xn) = 0, where P is again such a polynomial, i.e., P is a
finite sum of terms of the form axl

kl . . . xn
kn where a is in Z

and the exponents ki are in N.  The statement that (or
question whether) there exist integer solutions at all to
this equation is symbolized by (∃xl . . . xn ∈ Z) [P(xl,. . .,xn)
= 0].  Closely related questions are whether there exist
natural number solutions (∃xl . . . xn ∈ N) [P(xl,. . .,xn) = 0]
or positive integer solutions (∃xl . . . xn ∈  N+) [P(x1,. . .,xn)
= 0].

Interest in Diophantine problems lay mostly dormant until
the 17th century, when they were taken up by the out-
standing amateur mathematician Pierre de Fermat, who
solved many individual Diophantine problems, often chal-
lenging others to do the same without revealing his meth-
ods.  Subsequently the subject was pursued by such great
mathematicians as Euler, Lagrange, Gauss, Dirichlet, Dedekind,
and others through the 19th century.  This work brought
to bear many ingenious and difficult arguments, which were
organized by various techniques; however, no general theory
emerged.

Faced with this situation at the turn of the 20th century,
David Hilbert proposed the following decision problem for
arbitrary Diophantine equations:  To devise a process accord-
ing to which it can be determined by a finite number of operations
whether the equation is solvable in integers.1  This problem was
the tenth on his famous list of twenty-three problems in a
wide variety of fields, which Hilbert dramatically presented
as a challenge in his address to the International Congress
of Mathematicians in 1900.  Hilbert’s optimism about find-
ing a general algorithm for deciding all questions of the
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form (∃xl,. . .,xn  ∈ Z)[P(xl,. . .,xn) = 0] with P an integer
polynomial was in line with his proclaimed optimism about
the eventual solvability of all mathematical problems, but
flew in the face of the fact that Diophantine equations
were known to be exceptionally resistant to general meth-
ods of solution.  Indeed, for classifications according to
degree, an algorithm was subsequently provided by Carl
Ludwig Siegel only for the general problem of Diophan-
tine equations of degree 2 and arbitrarily many unknowns.
(The degree of p(xl,. . .,xn) is the maximum of the sums of
the exponents kl + . . . + kn of its terms axl

kl . . . xn
kn; the

general polynomial of degree 2 in two variables is thus of
the form ax1

2 + bx1x2 + cx2
2 + dx1 + ex2 + f.)  On the other

hand, in classifications according to the number n of vari-
ables, some progress has been made in recent years only
for n = 2 and here only for a wide class of equations of
degree higher than 2.2  Even now, practically nothing sys-
tematic is known for nonquadratic equations in more than
two variables.

With the emergence in the 1930s of the theory of recur-
sive functions and the demonstrated effective unsolvability
of some logical and mathematical problems, it became possible
to consider giving a negative solution to Hilbert’s Tenth
Problem.  In fact, there were already related negative re-
sults due to Gödel in his famous 1931 paper on incom-
pleteness of formal systems of arithmetic.  He there associ-
ated with each consistent axiom system T containing a sufficient
amount of arithmetic, a true statement not provable in T,
of the form ∀x(f(x) ≠ 0) where f is primitive recursive.
Then he succeeded in showing that the relation f(x) = y is
definable over N in the form:

(1) f(x) = y ↔(Qlzl) . . . (Qmzm) [P(x,y,zl,. . .,zm) = 0]
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where each Qi is either the universal quantifier “∀” or the
existential quantifer “∃”, and P is a polynomial with inte-
ger coefficients.  Somewhat later (1950), Martin Davis suc-
ceeded in showing that one can choose in place of the
right-hand side of (1), a definition in which all but one of
the Qi are existential, and where the universal quantifier is
“bounded,” so that f is definable in the form:

(2) f(x) = y ↔ (∃u)(∀w ≤ u)(∃zl . . . zm)
[P(x,y,u,w,zl,. . .,zm) = 0]

for a suitable polynomial P.  Hence elimination of the bounded
universal quantifier would give a negative solution to Hilbert’s
Tenth Problem.  For, by the work of Church, Turing, and
Kleene:

(3) (a) Every non-empty recursively enumerable set A of
natural numbers is definable in the form

x ∈ A ↔ ∃y[f(y) = x]

with f primitive recursive; and
(b) one can construct a recursively enumerable set A

which is not recursive and hence not effectively decidable.

Thus, elimination of the bounded universal quantifier
in the form (2) for such A would eventually give

(4) x ∈ A ↔ (∃zl . . . zm) [P(x,z1, . . . zm) = 0]

for a suitable integer polynomial P, and this would show
that there is no general algorithm for deciding whether a
Diophantine equation has any solutions at all in the natu-
ral numbers.

A set A of natural numbers is called Diophantine if it is
definable in the form (4) with the variables “zi” ranging
over N.  This is equivalent to its being definable in purely
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existential form in the structure (N,+,·).  Julia Robinson’s
work here started with the specific question, posed by Tarski,
whether the set {2,22,. . .,2n,. . .} of powers of 2 is Diophan-
tine.  At first she tried to establish Tarski’s conjecture that
the answer would be negative, but failing in that, she be-
gan to consider the opposite conjecture, and before long
was led to the general problem of the Diophantine definability
of arbitrary recursively enumerable sets.  In her paper (1952)
Robinson reported her first results in this direction.  She
showed there if R is any binary relation in the natural
numbers of roughly exponential growth in the sense of (5)
next, then the relation x Pow y (x is some power of y) is
existentially definable in the structure (N,+,·,R), where:

(5) (a)   ∃n  ∀x  ∀y [R(x,y)→y < x  

...
x
n} ], and

(b)  ¬ ∃k  ∀x  ∀y [R(x,y)→y < xk].

Furthermore, she showed that

(6) The relations xy = z, (x/y) = z and x! = y are all existen-
tially definable in terms of Pow, hence in terms of any R of
roughly exponential growth.

The full significance of Robinson’s 1952 results was not
to emerge for close to a decade.  During that period she
continued to work hard on the general problem of Diophantine
definability without substantial progress, though, as described
above, she was able to obtain very satisfying results in her
other two main areas of interest.

Around 1960, Julia received the draft of a paper by Mar-
tin Davis and Hilary Putnam in which they showed that if
the famous hypothesis that there exist arbitrarily long arithmetic
progressions containing only prime numbers were true, then
every recursively enumerable (r.e.) set would be exponen-
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tial Diophantine, i.e., existentially definable in (N,+,·,Exp),
where Exp(x,y) = xy.  She quickly succeeded in eliminating
that hypothesis (still unproved) and also simplified their
arguments in many other respects.  This led to the joint
publication (1961) with Davis and Putnam in which the
main result is that every r.e. set A is the set of all x for
which a Diophantine equation P(x,zl,. . .,zm) = 0 with vari-
able exponents has solutions zl,. . .,zm in N.  The Davis, Putnam,
Robinson paper (1961) also featured the “J. R. Hypoth-
esis,” that some relation R of roughly exponential growth
is Diophantine.  By her 1952 results and this joint paper,
the J. R. Hypothesis implies that every r.e. set is Diophan-
tine.  But, once more, matters would rest without essential
progress for almost a decade.

Julia Robinson’s doctor had told her mother in 1941
that she would be lucky to live to age forty.  In 1961, when
she was forty-one, her heart was functioning so poorly that
the only alternative to a life of invalidism was an opera-
tion, by a technique then in its pioneering stage, to re-
move the built-up scar tissue.  Her health improved dra-
matically, and one month after surgery, Julia took up bicycling
as a new form of exercise.  Over the following years, she
bought a half dozen increasingly better bicycles and thereby
enjoyed many outings and cycling trips in the U.S. and
elsewhere, including The Netherlands.  Raphael Robinson
sometimes complained that “while other men’s wives buy
fur coats and diamond bracelets, [my] wife buys bicycles.”
(Autobiography, p. 18.)

Julia continued to work hard on Hilbert’s 10th Problem
throughout the 1960s.  Then in 1970 the news came from
the U.S.S.R. that a twenty-two-year old mathematician in
Leningrad named Yuri Matijasevic̆ had succeeded in estab-
lishing the J. R. Hypothesis.  He showed that the sequence
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of even Fibonacci numbers, known to be of exponential
growth, formed a Diophantine relation.  This work involved
elementary properties of the so-called Pell (Diophantine)
equation x2 + (a2 - 1)y2 = 1 for a > 0.  As it happens,
Robinson had used the same equation in her 1952 paper
and was very familiar with its properties.  In retrospect, she
realized that she had herself been very close to the solu-
tion of Hilbert’s 10th Problem.  Nevertheless, she was very
excited and pleased to see the long effort capped by
Matijasevic̆’s achievement, and she immediately sent her
generous congratulation:  “. . . now I know it is true, it is
beautiful, it is wonderful. . . . If you really are 22, I am
especially pleased to think that when I first made the con-
jecture you were a baby and I just had to wait for you to
grow up.” (Autobiography, p. 19.)  In 1971, the Robinsons
visited Leningrad and had the pleasure of meeting Matijasevic̆
and his wife.

Capitalizing on the breakthrough, Julia Robinson and
Yuri Matijasevic̆ subsequently collaborated on three papers,
(1974), (1975), and (1976), the last of these jointly with
Martin Davis.  In the 1975 paper Robinson and Matijasevic̆
succeeded in reducing to 13 the number m of unknowns in
the representation (4).  In later work (by Matijasevic̆ alone),
this number was further reduced to 9.  There is still a wide
gap between the positive information on algorithmically
solvable Diophantine equations in two unknowns mentioned
above and the negative results for 9 and more unknowns.
The most challenging open problem currently in this di-
rection is whether there is a general algorithm for decid-
ing the solvability of Diophantine equations in three un-
knowns.

The paper of Davis, Matijasevic̆, and Robinson (1976)
provides a beautifully exposed yet concisely presented sur-
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vey of these results on Hilbert’s 10th Problem, together
with a series of new “positive” applications, such as the
Diophantine representation (i.e., as the range of positive
values of a polynomial) of the set of prime numbers, and
the equivalence of many famous problems—including the
Riemann Hypothesis—with statements of the form (∀zl . . .
zm)[P(zl,. . .,zm) ≠ 0]; the paper also presented a number of
further interesting open problems.  This work was solicited
for the Proceedings of the 1974 Symposium on Mathematical
Developments Arising from Hilbert Problems (ed. Browder, 1976).
Other papers that Robinson wrote herself on the subject of
Hilbert’s 10th Problem, both before and after the 1970
breakthrough, are (1962, 1), (1969, 1, 3, 4), and (1973, 1).

In recognition of her various outstanding contributions
and, in particular, of her central role in the work leading
to the solution of Hilbert’s 10th Problem, Julia Robinson
was elected in 1975 to the mathematical section of the
National Academy of Sciences, the first woman to be so
honored.  In the same year, the University of California at
Berkeley offered her a full professorship in the Depart-
ment of Mathematics with a special arrangement permit-
ting her to serve quarter-time since, although her health
had improved greatly as a result of the operation men-
tioned earlier, she still did not feel that she could take on
a full teaching load.  In the past she had on occasion taught
classes in the Department of Mathematics, but this was her
first appointment as a regular member of the faculty at
Berkeley since her receipt of the Ph.D. there in 1949.

Other signal honors followed in the next decade.  Robinson
was chosen as the colloquium lecturer at the 84th Summer
Meeting of the American Mathematical Society in 1980;
her lectures covered the main areas of her interests be-
tween logic and number theory, and the notes for these
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constitute her last writings, though they were not in final
form for publication.  In 1982, she was nominated for the
presidency of the American Mathematical Society (for the
years 1983–84), again the first woman to be so honored.
Uncertain whether to take on the position because of her
limited energies, she finally decided that, in the words from
her Autobiography (pp. 20–21):  “. . . as a woman and as a
mathematician I had no alternative but to accept.  I have
always tried to do everything I could to encourage talented
women to become research mathematicians.  I found my
service as President of the Society taxing but very, very
satisfying.”  In 1983, Julia Robinson received a MacArthur
Fellowship with its substantial award for a five-year period.
And, in 1985, she was chosen as a member of the Ameri-
can Academy of Arts and Sciences.

While she was presiding over the summer A.M.S. meet-
ing in Eugene, Oregon, in 1984, it was discovered that she
was suffering from leukemia.  After prolonged treatment
and hospital stays, she enjoyed a remission of several months
in the spring of 1985.  But then the disease returned, and
she died on July 30, 1985 at the age of sixty-five.  She is
survived by her husband, Raphael Robinson, and two sis-
ters, Constance Reid and Billie Comstock.

One of Julia’s last requests was that there be no funeral
service and that those wishing to make a gift in her memory
contribute to the Alfred Tarski Fund, which she had been
instrumental in setting up in honor of her late teacher,
friend, and colleague.  Modest to the end, she let her char-
acter and achievements speak for themselves.

I AM INDEBTED to Constance Reid, as well as to John Addison, Leon
Henkin, and Raphael Robinson of the University of California at
Berkeley for materials on the life, work, and career of Julia Robinson.
From published sources I have drawn most heavily on The Autobiog-
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raphy of Julia Robinson by Constance Reid, and Julia Bowman Robinson
(1919–1985) by Constance Reid with Raphael M. Robinson.  Other
valuable biographical material and personal impressions are listed
in the references which follow.

NOTES

1.  See Browder (1976), pp. 17–18, for the translation from the
original German. I have omitted the adjective “rational” before “in-
tegers” to avoid confusion below.

2.  For the result on Diophantine equations of degree 2, see
Siegel (1972); the work mentioned on Diophantine equations in
two variables of degree > 2 is due to Baker (1968).
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