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Irving E. Segal was a mathematician renowned for his 
pioneering developments in quantum field theory, func-
tional and harmonic analysis and for his now ubiquitous 
concept of C∗-algebra. Almost all of Irving Segal’s work 
was motivated by mathematical problems of funda-
mental physics. His pioneering works on C∗-algebras, 
von Neumann algebras, group representations, tensor 
algebras, infinite dimensional integration theory, and 
non-linear wave equations, as well as his specific focus on 
the conformal group of Minkowski space were aimed at, or 
offshoots of, his drive to understand quantum mechanics, 
quantum field theory, and cosmology.

Segal was known for his tweed jackets and strong coffee. 
As with many mathematicians, he was committed, working 
evenings, weekends, and vacations. He valued originality 
in everything, maintaining a skeptical attitude towards the “establishment” and what he 
viewed as conventional thinking. When he saw a sign reading “authorized personnel only,” 
he’d say, “Let’s authorize ourselves.” One-way streets were not an obstacle, because they 
could be traversed the wrong way simply by putting the car in reverse. He had a tendency 
to hold firmly to conclusions he reached deductively. He highly valued bebop, chess, 
nature walks, and Sara Lee pound cake.

Early Life and EducationIrving Ezra Segal was born on September 13, 1918, in the Bronx, New York. He was 
the second child of Aaron Segal and Fannie Weinstein, both of whom had immigrated 
from the Russian empire in the early part of the century and met in New York. Segal 
attended high school in Trenton, New Jersey, where he became known as the chess 
champion of the neighborhood. Looking back on his high-school years, Segal explained 
that he enjoyed passing his free time by conceiving of, and subsequently solving, differ-
ential equations. He was admitted to Princeton University at the age of sixteen and 
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commuted each day on the train from Trenton. As one of the few Jewish students in the 
culture of Princeton in the 1930s, Segal undoubtedly encountered difficulties due to 

antisemitism. Yet he graduated in three years, winning the George 
B. Covington Prize in Mathematics, and was admitted to Yale 
University at the age of nineteen as a Ph.D. student advised by 
Einar Hille.

Segal completed his Ph.D. thesis in three years and then, at the 
age of twenty-two, joined the Harvard University Mathematics 
Department as an instructor for the year 1940–41. At Harvard, 
he began to understand the dynamics of teaching in front of the 
lecture hall and inspiring students, for which he would become 
known in later years. In June 1941, he submitted a short note 
to the Proceedings of the National Academy of Sciences (PNAS) 
describing the content of his thesis.1 Segal was conscripted into 
the U.S. Army later that year to work as a scientist. From 1941 
to 1943, he worked as a research associate at 
Princeton University. His work from 1943 
to 1945 included classified research at the 
Aberdeen Proving Ground in Maryland on 
mathematical models of supersonic aerody-

namics of aircraft and ballistics. After the war, Segal published a full 
version of his PNAS note, along with its concomitant ideas and with 
all their far-reaching ramifications for various parts of mathematics 
and physics. Four papers on this subject matter, published in 1947 and 
soon after, will be discussed later.

From 1945 through 1948, Segal was a visiting member at Princeton’s 
Institute for Advanced Study. He was supported in his last year by the 
first of three Guggenheim fellowships. In 1948 he accepted a position 
at the University of Chicago as an assistant professor. His famous quote 
when asked what it was like to be part of the legendary department during this Marshall 
“Stone age” period, his answer was, “Oh, it’s not very good. It’s just the best there is.”

In 1955, he married artist Osa Skotting. His first son, William, was born in Chicago 
in 1957. His son Andrew was born in 1959 during Segal’s sabbatical to Denmark in 
1958-59. In 1960, Segal accepted a full professorship at the Massachusetts Institute of 

Figure 2: Irving Segal.  
(Courtesy of Segal family.)

Figure 1: Private Segal, 
1943. (Courtesy of  
Segal family.)
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Technology (MIT) and moved to Cambridge, Massachusetts. 
His daughter, Karen Birgitte, was born in 1961. He spent his 
1964-65 sabbatical at the University of Aarhus, Denmark, 
and from there visited with colleagues in Moscow, USSR; 
Malmō, Sweden; and Bures-sur-Yvette, France. In 1968, Segal 
moved his family residence from Cambridge to the more rural 

Lexington. He loved to take nature 
walks, especially around Walden 
Pond. During his 1973 sabbatical at 
the University of Copenhagen, he 
gave lectures in Moscow, Paris, Trieste, 
Pisa, Bures-sur-Yvette, and Warwick. 
He won a Humboldt Prize and spent 
his next sabbatical year, 1981-82, in 
Germany.

In 1967 Segal, along with Paul Malliavin and Ralph Phillips, 
founded the Journal of Functional Analysis, which quickly became 
one of the most prestigious mathematics journals. In 1971, he 
was elected to the American Academy of Arts and Sciences, and 
in 1973 he was elected to both the National Academy of Sciences 
and the Royal Danish Academy of Sciences. Segal’s marriage 
to Osa ended in 1977. He married Martha Fox in 1985, with 
whom he had a daughter Miriam, born in 1990. Osa married 
Saunders MacLane of the University of Chicago in 1987.

Research and Career

In 1947 Segal published three papers developing the notion of a C ∗-algebra—an algebra 
of bounded operators on a complex Hilbert space complete in operator norm and closed 
under taking adjoints. He used this structure to prove the existence of a separating family 
of unitary representations of locally compact groups,2 and, in the same year, published 
a paper “Postulates for general quantum mechanics,” also based on the notion of C ∗- 
algebra.3 He aimed in the latter paper to provide a mathematical structure within which 
one might find a formulation of both quantum mechanics and quantum field theory, 
adequate for incorporating in a meaningful way all the special cases arising from different 
physical systems. He showed how both classical mechanics and quantum mechanics could 
be encompassed by this structure.

Figure 3: Walden Pond. 
(Courtesy of Segal family.)

Figure 4: Walden Pond, 
later years. (Courtesy of 
Segal family.)
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The method of constructing a representation of a C ∗-algebra developed in these papers—
the so called GNS construction (Gelfand-Naimark-Segal)—has become a standard tool 
in C ∗-algebra theory and in particular in those extensive parts of quantum field theory in 
which C ∗-algebras provide an environment at the heart of axioms.

Concerning the first 1947 paper, Richard Kadison writes in his memorial article for Segal,4

With this construction, Segal then gives the most natural proof of the 

Gelfand-Raikov theorem on the existence of a separating family of irre-

ducible unitary representations of locally compact groups. The impor-

tance of what Segal achieved in this short (16-page) article is difficult to 

overstate!

Michelle Vergne writes in her memorial article for Segal,5

Between 1940 and 1952, his concern for group representations was 

focused on the abstract theory of representations of arbitrary locally 

compact groups and of algebras related to groups. Some of his abstract 

theorems are now so much part of our current knowledge that many 

mathematicians in the field of group representations, including myself 

before writing this bibliographical notice, may have forgotten that these 

theorems were discovered by Segal around 1950. Who is not aware that 

the group algebra of a group is its C∗-algebra? Segal proposed to asso-

ciate a C∗-algebra to any locally compact group in 1947. Who does not 

know the Plancherel measure? The existence of the Plancherel measure 

was proven in 1950 by Segal. Who is not sure that the center of the 

enveloping algebra of a Lie group acts by scalar operators in any irreduc-

ible unitary representation? This was proven by Segal in 1952.

In 1955, Segal turned his attention to some of the specific structures that arise in 
quantum field theory. He began work on infinite dimensional integration theory, an 
understanding of which was demanded from the very beginning of quantum field 
theory: A wave equation such as ∆u = ∂2u/∂t2 was regarded by the founders of quantum 
field theory as just a classical mechanical system consisting of infinitely many harmonic 
oscillators. Indeed, for n harmonic oscillators coordinatized by a point u in Rn with a 
linear restoring force, Au, and of mass 1, Newton’s equations, F = ma, are Au = (d/dt)2u, 
with u(t) the position of the system in Rn at time t. Replacing Rn by the infinite dimen-
sional space H= Real L2(R3) and taking ∆u as the linear restoring force we see informally 
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that Newton’s equations go over to the wave equation. This was a compelling heuristic 
for the founders of quantum field theory in 1929 and remains a compelling heuristic 
in recent physics books. The quantum Hilbert state space for n harmonic oscillators is 
L2(Rn, Lebesgue measure) and the corresponding quantum mechanical Hilbert space for 
quantization of the wave equation “should” then be L2(H, infinite dimensional Lebesgue 
measure). In spite of the fact that infinite dimensional Lebesgue measure has no useable 
meaning, Segal gave an accurate and meaningful interpretation of this space, along 
with the operators naturally associated with it, in his 1956 and 1958 papers, implicitly 
using the ground-state transformation to change from Lebesgue measure to a Gaussian 
measure.6,7 Gaussian measures on the space of continuous functions on [0, 1] were intro-
duced by Norbert Wiener in 1923 and were used by Cameron and Martin to develop 
a kind of advanced calculus over Wiener space. But the central role of the reproducing 
Hilbert space in their work was first brought out by Segal’s 1956 paper. Hundreds of 
papers have been written by pure mathematicians with no intention to relate to quantum 
field theory that can be traced back to the concepts introduced in that paper. As so often 
happens, the origin of ideas gets lost in history, especially if the idea crosses disciplines. In 
the same paper, Segal introduced a transform, later called the Segal-Bargmann transform, 
as an intermediate step in proving his main theorem, the unitary equivalence between the 
Hilbert space of complexified symmetric tensors over H and L2(H, Gauss measure), which 
intertwines the standard creation and annihilation operators with differential operators.

Immediately after, Segal proved the analogous unitary equivalence of the Hilbert space 
for free Fermions with a space of square integrable operators lying in a factor of type 
II1, a Clifford algebra.8 Here he made use of his previously developed non-commutative 
integration theory.9 It turned out years later (1975, to be exact) that the analogy with 
L2(H, Gauss measure) is more than an algebraic similarity. The dimension-independent 
Sobolev-like coercivity possessed by the Dirichlet form for Gauss measure is shared by the 
corresponding Dirichlet form for the Clifford algebra and with exactly the same constants.

For a real Hilbert space H, the symplectic group of H ⊕ H ∗ comes up naturally in the 
context of Boson quantum fields because it is the invariance group for the canonical 
commutation relations. If H is finite dimensional then a uniqueness theorem of von 
Neumann shows that the automorphism of the canonical commutation relation (CCR) 
algebra induced by such a symplectic transformation is implemented by a unitary 
operator in any irreducible representation of the CCR. Uniqueness fails if H is infinite 
dimensional, as does unitary implementability. Together with his student David Shale, 
Segal characterized those symplectic transformations that are so unitarily implementable.10,11 
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This kind of question goes to the foundations of quantum field theory because of the 
central role the canonical commutation relations play. Shortly afterward, Andre Weil 
rediscovered and extended their results to a number theoretic context. The theorem, 
known as the Segal-Shale-Weil theorem, represents an amusing amalgam of quantum 
field theory with number theory. Vergne discusses this history further in her 2002 tribute 
to Segal mentioned earlier.

If a classical system to be quantized is specified by a nonlinear wave equation, such as the 
equation (∂/∂t)2φ = ∆φ + φ3 or the Yang-Mills hyperbolic equation, then the standard 
quantization procedure requires one to identify the phase space of this infinite dimen-
sional dynamical system. The initial value and initial time derivative of a solution to 
the non-linear wave equation play the role of position and momentum (not velocity, 
sorry) and therefore a point of phase space can conceptually be identified with a classical 
solution. This is not the usual way of thinking of phase space in Newtonian mechanics. 
But Segal introduced this viewpoint, and it has caught on in the works of many others. 
As to what one should do next with this viewpoint for the purpose of quantization 
remains to be settled. Segal proposed a way to use this viewpoint for quantization, and 
it attracted a few followers. But to carry out any of the procedures that he had in mind 
it was necessary to deal first with the problem of existence and uniqueness of solutions 
to the classical non-linear wave equations. From about 1960 onward, Segal developed 
very novel techniques to this end and also introduced the notion of scattering for such 
non-linear equations. Walter Strauss writes,12

He invented and developed the concept of a semigroup of nonlinear 

operators, including the definitive formulation of the concept of blow-up 

in finite time of a solution in a Banach space. It is interesting that his 

thesis advisor was Einar Hille, of the celebrated Hille-Yosida Theorem on 

semigroups of linear operators.

In 1979 he wrote the first paper that solved the Cauchy problem, locally 

in time, for the (hyperbolic) Yang-Mills equations.13 This paper was the first 

step in the resolution a few years later of the global problem by Eardley 

and Moncrief. 

Later papers enlarged the allowed initial data space. But at the present time technology 
has not yet been able to deal with the data of critical Sobolev index 1/2 in three space 
dimensions.
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Strauss also writes,

He was always centrally interested in what he called fundamental physics, 

which for him mainly included quantum theory, quantum field theory, 

and cosmology. To him non-linear wave equations were a key ingredient 

in the mathematical construction of such physical theories. His ideas have 

played a crucial role in the development of the fundamental theory of 

non-linear waves.

The explicit construction of quantum fields for specific, relatively simple models of 
quantum field theory began with the work of Segal’s student Edward Nelson in 1966.  
A key early step in the construction of the Hilbert spaces and operators thereon, needed 
to show the internal consistency of these theories, consisted in showing that the Hamil-
tonian operator of the theory is bounded below. It is well understood that if it were 
not bounded below then the universe described by the theory would collapse. To this 
end Nelson first proved an unusual kind of boundedness property of the semi-group 
generated by the Hamiltonian of a non-interacting field (think, for example, of an 
electromagnetic field without any charges around.) James Glimm improved this bound 
in 1968 so as to make it nominally independent of quantum dimension. Segal then 
showed that the bound is indeed independent of quantum dimension.14 The circle of 
ideas surrounding these bounds have come to be known as hypercontractivity bounds. 
After a co-author of this memoir showed the equivalence of these bounds with certain 
dimension-independent Sobolev-like inequalities, so-called logarithmic Sobolev inequal-
ities, this family of inequalities became an influence in distant regions of mathematics, 
including classical statistical mechanics, large deviations, concentration of measures, 
optimal transport, random matrices, computer science and Perelman’s solution to the 
Poincaré conjecture. Because the papers of Nelson, Glimm, and Segal were written in the 
format of the creation and annihilation operators fundamental to quantum field theory, 
a mathematician working in any of the above areas would find it difficult to trace the 
history of logarithmic Sobolev inequalities back to its proper origins in the work of these 
three authors.

In 1972 Segal turned most of his attention from construction of quantum fields to 
cosmology. Maxwell’s equations and other wave equations corresponding to mass zero 
are not only invariant under the ten-dimensional Lorentz group but also under the 
15-dimensional conformal group of Minkowski space. The conformal group is generated 
by Lorentz transformations, dilations, and inversion in the light cone. Whereas three 
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of the 10 dimensions of the Lorentz group have the physical interpretation of transfor-
mation to a coordinate system in Minkowski space moving with constant velocity, three 
of the other five dimensions of the conformal group have the physical interpretation of 
transformation to a coordinate system in Minkowski space moving with constant acceler-
ation. The invariance of Maxwell’s equations under the conformal group was discovered 
by Bateman and Cunningham in 1910. The group has played a role in various theories 
within general relativity. In 1967, Segal proposed a way to combine it with quantum 
field theory and enhance its role in cosmology.15 Because of its role in a quantum theory, 
the classification of unitary representations of the conformal group received much stim-
ulation. Because of its role in cosmology, Segal pursued statistical analyses of brightness 
versus recession velocity of stars with the aim of showing that Hubble’s generally accepted 
linear recession law is wrong, and the quadratic recession law predicted by his use of 
the conformal group is commensurate with the data. He was one of the first to offer 
alternatives to the Hubble paradigm of the Big Bang, arguing that there was a lack of 
support from statistical observational data of redshifts of the most distant observable 
objects. Most astronomers have not accepted his statistical interpretation of the data. It 
is generally regarded by astronomers that the only stars whose intrinsic brightness can be 
reliably estimated are Type 1a supernovas or Cepheid variable stars. For these stars, the 
recession velocity vs. brightness data supports Hubble’s law. Aside from disagreement 
over the interpretation of data, general relativists were split on its correctness as a physical 
theory on more theoretical grounds, with discussion even reaching the New York Times in 
1990.16,17,18 

Segal’s 1976 book, Mathematical Cosmology and Extragalactic Astronomy,19 is an expo-
sition of the concepts and the large amount of work already done by 1976 in pursuit of 
this theory. During the last 25 years of his life, more than half of the 225 papers that he 
published in his lifetime were devoted to the mathematics of his chronometric theory 
and the data analysis that supported it. Quite apart from whether the theory was phys-
ically correct, its pursuit generated a tremendous amount of understanding of represen-
tations of the conformal group of Minkowski space and of the adjacent structures. The 
review article by Michelle Vergne discussed previously gives a survey of this very extensive 
work by Segal and others.

Segal died in 1998 of a heart attack while out for a walk near his house in Lexington. 
He is survived by his second wife, Martha, four children and five grandchildren. Segal’s 
first wife, Osa, passed away in 2014. In his lifetime, Irving Segal produced forty Ph.D. 
students. A list can be found online at The Mathematics Genealogy Project. 
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