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Smith served the National Academy of Sciences in various ways—as chair of the Math-
ematics Division (1955–1957), as chair of the Nominating Committee (1957–1958), 
as a member of the Committee of Scientific Conferences (1951–1955), and as chair 
of that committee (1952–1955). He was also a member in 1961 of the Committee on 
the Marsh Fund of grants-in-aid to researchers, which at that time was administered 
by the Academy. Smith served the American mathematical community as a member of 
the Committee on Mathematics Advisory to the Office of Naval Research in 1951, as 
a member of the U.S. National Committee for Mathematics from 1953 until 1957, as 

Paul Althaus Smith was born in Lebanon, NH, and received 
an undergraduate degree from Dartmouth College in 
1921. He went to the University of Kansas to study math-
ematics with Solomon Lefschetz and moved with his 
mentor to Princeton University, where Smith continued to 
work under Lefschetz’s direction and received his Ph.D. 
from Princeton in 1925. His thesis was titled “Approxi-
mation of Curves and Surfaces by Algebraic Curves and 
Surfaces.”

After a year as fellow at Harvard University in 1926–1927, 
Smith joined the mathematics faculty of Columbia Univer-
sity and Barnard College in 1927 as an instructor; he rose 
through the ranks, becoming a full professor in 1940 and 
the Davies Professor of Mathematics in 1951. He served as 
department chair from 1945 to 1951 and again in 1956–
1957 and 1961. Smith retired in 1968 and was Davies Professor Emeritus until his death in 
1980, though he also continued to teach at Columbia as a special lecturer in mathematics 
from 1968 until 1971. He had six Ph.D. students and a total of 97 direct Ph.D. mathemat-
ical descendants. Smith was elected to the National Academy of Sciences in 1947 and 
received an honorary degree, Doctor of Science, from Columbia in 1973.
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treasurer of the American Mathematical Society (AMS) in 1937, and as an editor of the 
Bulletin of the AMS from 1937 until 1946.

In 1935, Smith married Suzanne Bloch, a well-known musical performer and daughter 
of the composer Ernst Bloch. They had two sons, Matthew and Anthony. Throughout his 
life, Smith valued and was a friend to artisans, whether they worked with mathematical 
objects or physical objects. He made medieval musical instruments from scratch, many 
of which were played by his wife. With his own hands, he build a house in Vermont, in 
his beloved New England, on the top of a hill with a beautiful view. He not only chose 
the location and built the house, he also cleared a path for the road leading to the house 
and cleared trees from around the house to provide the view.

The citation for the honorary degree that Smith received from Columbia reads as follows:

A New Hampshire Yankee, educated at Dartmouth and Princeton, you 

came to the Columbia-Barnard campus in 1927 and served the university 

and the American mathematical community for half a century. A pioneer 

in topology, you created the profound theory of periodic transformations, 

which greatly influenced the development of mathematics and placed 

you in the select group of American mathematicians who changed the 

United States from a mathematical province to a leading mathematical 

nation.

A bold and original thinker, you are as much at home with manual skills 

and music as you are with concepts and logical operations. A creative 

mathematician, an accomplished musician, and a builder of ancient 

musical instruments, you have added lustre, style, and grace to our 

community.

Overview of smith’s work

Starting in the earliest days of his career and continuing for the rest of his life, Smith 
studied topological spaces and their topological symmetries—in other words, he studied 
group actions on topological spaces. When Smith received his Ph.D. degree, topology 
was a young subfield of mathematics. Some of its foundations had been laid in the 
second half of the 19th century, but topology as an independent field was established 
through the work of Henri Poincaré around the turn of the century and into the first 
decade of the 20th century. During that period the basics of point-set topology were 
established and homology theory was being studied in a systematic way, but they had 
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not yet received the axiomatic codification that came later. Smith’s work in the 1930s 
and ’40s was some of the very first to consider the question of symmetries for topological 
spaces.

The idea that symmetry is an important aspect of any topological, geometric, or physical 
system is now widely recognized. Whole fields have arisen around the study of symmetry. 
In mathematics there are areas such as equivariant cohomology, equivariant index 
theorems, and fixed point theory and localization in cohomology. In physics, the ideas of 
gauge theories and symmetry are fundamental. Many of these developments have roots 
in Paul Smith’s work. Even more important than any particular result or question of his 
was Smith’s belief, as demonstrated by his lifelong devotion to the study, that symmetry 
in the topological and geometric setting was a rich topic worthy of serious investigation.

Smith’s gift, his genius, was to home in on the very best type of problems and questions. 
These were always simple to state, often appearing with hindsight to be the obvious 
question to ask or the obvious result for which to aim. Yet invariably they turned out to 
be of profound and long-lasting importance; several are now considered landmarks of the 
whole subject of group actions on spaces.

Smith’s work often involved very nice spaces—for example, Euclidean space or the 
sphere—but his results were formulated for a much more general class of spaces. 
Whatever the space under consideration, he always dealt with symmetries without any 
extra assumed properties beyond continuity. This meant that he had to confront difficult 
questions of local pathologies of the symmetries, and he relied heavily on the then-recent 
results in point set topology developed by Eduard Cech, Pavel Urysohn, Karl Menger, 
and James Alexander. Today, these local pathologies are not the focus of attention, and 
normally one treats symmetries that preserve a smooth—i.e., differentiable—structure 
on the space. Nevertheless, even though he was working in a technically much more 
challenging context, the results that Smith obtained and the questions that he asked are 
nontrivial and fundamental even in these more structured environments. His sense of 
mathematics led him to the essential features.

the hilbert-smith Conjecture

In an address to the International Congress of Mathematicians in 1900, David Hilbert 
posed a list of 23 problems he considered important for the future development of 
mathematics. The fifth of those problems concerned Lie groups. The problem stated 
by Hilbert was, “How far [is] Lie’s concept of continuous groups of transformations…
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approachable in our investigations without the assumption of the differentiability of the 
functions?” Exactly what Hilbert meant is open to debate. The most straightforward 
reading of this question would be to say, in modern language, that it asks whether a 
topological group whose underlying topological space is a manifold is in fact isomorphic 
as a topological group to a Lie group.

Hilbert’s fifth problem, as I have formulated it here, was solved by Andrew Gleason 
[5]. In 1953, Hidehiko Yamabe proved a related and stronger result, which is a solution 
to a slightly different interpretation of the problem. Yamabe’s result characterizes Lie 
groups among all locally compact groups. He showed that a locally compact group G is a 
projective limit of a sequence of Lie groups, and if G “has no small subgroups,” then G is 
a Lie group.

Let’s return to the first interpretation of Hilbert’s problem, assuming that the underlying 
topological space of a topological group G is a manifold. Of course, G acts as a group 
of symmetries of its underlying space so that G is a group of symmetries of a manifold. 
Guided by this, and before all the work cited above on Hilbert’s fifth problem was done, 
Smith generalized the problem by asking:

Conjecture 1. (Hilbert-Smith Conjecture). Let G be a locally compact 

topological group that is a group of symmetries of a (finite-dimensional) 

manifold. Then is G isomorphic as a topological group to a Lie group?

Local compactness is necessary: For any manifold M of positive dimension the diffeo-
morphism group of M is infinite-dimensional, and hence is not locally compact and a 
fortiori not a Lie group. Because of Yamabe’s results, it follows that to decide the Hilbert-
Smith Conjecture it suffices to decide whether there is a prime p for which the additive 
group of p-adic integers can occur as the group of symmetries of a manifold. This 
problem remains open today.

smith theory

Most of Smith’s work concentrated on the case of finite-order symmetries of spaces, 
usually of prime order p, and focused on the homological properties of the spaces and 
the subspaces fixed pointwise under the symmetry. In addition to reasonable local prop-
erties, the space was assumed to have the mod p homology of either Euclidean space of 
dimension n or the sphere of dimension n. In two articles, titled “Transformations of 
finite period” (1938) and “Transformations of finite period. II” (1939), Smith estab-
lished fundamental results in this context—results that now carry the name “Smith 



6

PAUL SMITH

Theory.” Smith began by asking himself, “To what extent does a finite-order symmetry 
of the sphere resemble an orthogonal transformation? For example, is its fixed point set 
a subsphere?” Brouwer [2] and Kérékjártó [6] had proved this for the 2-sphere, but the 
question was totally open in higher dimensions. As Smith said, “For n > 2, the difficulties 
that make a similar result seem unattainable at the present time are well-known to topol-
ogists. But if it is necessary to abandon the idea of determining completely the structure 
of periodic transformations it may nevertheless be of interest to study such of their prop-
erties as can be described in terms of homology theory.” He showed the following:

Theorem 1. Fix a prime p. Suppose that X is a finite dimensional, compact 

Hausdorff space. Suppose that τ : X ¦ X is a symmetry with τp = Id
x
. If the 

mod p (Čech) homology of X is the same as that of an n-sphere, then the 

fixed point set of τ has the mod p (Čech) homology of a sphere.

In “A theorem on fixed points for periodic transformations”(1934), Smith considered the 
natural extension of these results to Euclidean space. He showed:

Theorem 2. Fix a prime p. Suppose that X is a finite-dimensional locally 

compact Hausdorff space, suppose that the mod p (Čech) homology 

of X is the same as that of a point, and suppose that τ is a continuous 

symmetry of X of order p. Then the fixed point set of τ has the mod p 

(Čech) homology of a point.

In both theorems, if X is a smooth manifold and τ preserves the smooth structure, then 
one can replace “Čech homology” with “singular homology.”

There is also a local version of the first result: if X is n-dimensional, locally contractible, 
and has the local mod p homology of Euclidean n-space at every point, then the fixed 
point set F has the local mod p homology of a Euclidean space at every point and the 
dimension of the model Euclidean space is the same at every point of F.

Corollary 1. Any symmetry of Euclidean space of finite prime-power order 

has a fixed point.

These two theorems constitute what is known as “Smith Theory.”

Smith asked whether it was true more generally that symmetries of finite, but not prime-
power, order of Euclidean space have a fixed point. This turns out not to be true. Pierre 
Conner and E. E. Floyd [3] showed that for distinct primes p and q, there is a smooth 
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action of the cyclic group of order pq on Euclidean space without a fixed point. For 
example, there is such an action of the cyclic group of order 6. Even more, the Conner-
Floyd construction can be modified such that for any finite simplicial complex F there 
is a smooth action of the cyclic group of order pq on a Euclidean space whose fixed 
point set is homotopy equivalent to F. Thus for any pair of distinct primes p, q there is a 
symmetry of order p of Euclidean space such that the mod q homology of its fixed point 
set is not the same as that of a point. Similarly, there are symmetries of a sphere of order p 
such that the mod q homology of its fixed point set is not the same as that of any sphere. 
This indicates that Smith had found the best statement of the extent to which the fixed 
point set of a finite-order symmetry resembles that of an orthogonal one: The symmetry 
should be assumed to be of prime-power order and one should consider homology with 
coefficients cyclic of order that prime.

Smith also considered more general groups of symmetries of the sphere. He asked what 
restrictions there are on the group-theoretic properties of a group G that is a finite group 
of symmetries of the sphere. This question has not been completely answered, though 
the result is now known for the case of the 3-sphere, using results of Grigori Perelman on 
the existence of geometric structures on 3-manifolds. Smith asked too: “If G is a finite 
group acting freely on a sphere, are all its p-primary subgroups (p an odd prime) cyclic? 
What about the case p = 2?” Smith himself answered these questions. In “Permutable 
periodic transformations” (1944), he showed that if G is a finite group acting freely on a 
sphere, then any Abelian subgroup of G is in fact cyclic. This implies that the p-primary 
subgroup of G is cyclic or for p = 2 either cyclic or a generalized quaternion group. 
Groups with this property are exactly the groups with periodic cohomology. But not all 
of them act freely on a sphere (see [7]).

Smith theory is properly viewed as the beginning of the equivariant cohomology theory 
of spaces with group actions, and in particular localization theorems relating cohomo-
logical invariants of the ambient space to those of the fixed points of a prime-power order 
symmetry. Equivariant cohomology developed into a full theory in the 1950s and ’60s, 
primarily by Armand Borel, among many others. Localization theorems were developed 
by Sir Michael Atiyah, Raoul Bott, Graeme Segal, and Daniel Quillen, among others. 
Both of these areas remain of central importance throughout mathematics and theoretical 
physics today.
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the smith Conjecture

As Smith quickly realized, one case of Smith theory is especially interesting. When X is 
the 3-sphere and τ is orientation-preserving symmetry of prime order, it follows from 
Smith theory that the fixed point set of τ is a circle (or empty). This led Smith to ask, “If 
the fixed point set of a prime order, orientation-preserving symmetry of S3 is nonempty, 
then is it an unknotted circle in S3?” (See [4].)

What an obvious question! It turns out that without the assumption that τ is differen-
tiable, the fixed point set may not be locally flat and hence not equivalent to the standard 
unknotted circle [8]. The statement that this is indeed the case when τ is differentiable 
became known as:

Conjecture 2. (The Smith Conjecture). If the fixed point set of a prime 

order, differentiable, orientation-preserving symmetry of S3 is nonempty, 

then it is an unknotted circle in S3.

This conjecture remained open from its formulation in the 1940s until its resolution in 
1978. (Friedhelm Waldhausen [9] had resolved the case p = 2 earlier.) The solution of 
the Smith Conjecture required major new ideas in 3-dimensional topology. From the 
purely topological arena, it required Waldhausen’s theory of incompressible surfaces. 
From differential geometry came the equivariant version of Dehn’s Lemma and the loop 
theorem due to William Meeks and Shing-Tung Yau. Above all, it required William 
Thurston’s results about hyperbolic structures on 3-dimensional manifolds and, related 
to that, the work of Marc Cullen and Peter Shalen on groups acting on trees. (For more 
details, see [1] and the references therein.) All of these developments were far in the 
future and unimagined when Smith formulated the Smith Conjecture. The fact that it 
took so much sophisticated mathematics to resolve this elementary-sounding statement 
attests to its depth.

smith’s method of Argument

Fix a prime p. Let X be a finite-dimensional locally compact metric space and τ a trans-
formation of X of period p. Denote by F the fixed point set of τ. We consider the Čech 
chain complex of X with coefficients 𝔽p, the field with p elements. The transformation τ 
induces an action of Cp, the cyclic group of order p, on this complex, and hence the Čech 
complex of X is a chain complex of modules over the group ring 𝔽p [Cp]. Smith considers 
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two elements, ρ0 = ∑p-1
i=0 τi and ρ1 = 1 - τ, in this group ring. The symbol ρ stands for 

either ρ0 or ρ1 and if ρ is given in some discussion, then ρ̄ is the other element.

The Smith homology group Hρ
r (X, F) is defined as follows: Consider the group relative 

cycles Zr in (X, F) of the form ρWr modulo F. We divide out by the group of boundaries 
of chains of degree r + 1 of the same type—i.e., we divide out by all relative cycles of 
the form ∂ρWk+1. Smith defines a descent process from Hρ

k(X, F) to Hρ̄k-1(X, F) as follows: 
Given a cycle Zk modulo F of type ρ, Zk = ρWk, the cycle Zk-1 = ∂Wk is of type ρ̄. Smith 
shows that this determines a well-defined map, the descent map, from Hρ

k (X, F) → Hρ̄k-1 
(X, F). Under the assumption that X is 𝔽p an homolgy sphere of dimension n, Smith 
shows that if cycle modulo F of type ρ, say Zr =ρWr is nontrivial in Smith homology 
but ∂Wr vanishes in Smith homology, then Wr is a relative cycle in (X, F) representing a 
nontrivial class in Hr (X, F).

Furthermore, one can reverse this process under one assumption. If Zk-1 is a cycle modulo 
F of type ρ,̄ then Zk-1 is an absolute cycle in X . If the class of Zk-1  is trivial in Hk-1 (X), 
i.e., if Zk-1 = ∂Wk for some chain Wk then there is a cycle of Zk of type ρ (namely ρWk) 
representing a class in Hρ

k (X, F) whose descendant is [Zk-1]. Now suppose that X has the 
homology of an n-sphere with 𝔽p coefficients. Under this assumption, Smith showed that 
there is only one maximal nontrivial descent sequence in Smith homology. The initial 
(top) element of this sequence is the fundamental class of X and its bottom class is repre-
sented by ρW, where ∂W is a nontrivial homology class in F. In addition, F has no other 
reduced homology. Similarly, if X is acyclic with 𝔽p coefficients, then there are no descent 
sequences and the reduced homology of F is trivial, meaning that F is acyclic with 𝔽p 
coefficients.

In the case when X is a smooth manifold and τ is smooth, or in the case when X is a 
finite simplicial complex and τ is a simplicial map, we can take a more modern point of 
view of this construction. In either case there is a finitely generated chain complex C*(X) 
of modules over the group ring 𝔽p[Cp], whose homology is identified with that of X (with 
the induced action of Cp being trivial on homology). There is a subchain complex  C*(F) 
on which the Cp-action is trivial computing the homology of F. All chain groups of the 
quotient chain complex C*(X)/C*(F) are free modules over 𝔽p[Cp].
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Let C*
ρ0 (X) and C*

ρ1 (X) be the subchain complexes of C*(X) given by ρ0C*(X) and ρ1C*(X), 
respectively. These complexes compute the Smith homology groups H*

ρ0(X, F) 
and, H* 

ρ1(X, F) which follow from their homological properties. For consider the two 
exact sequences of complexes

0 ¦C*
ρ0(X) ⊕ C*(F) ¦ C*(X) ¦C*

ρ1(X) ¦0

0 ¦C*
ρ1(X) ⊕ C*(F) ¦ C*(X) ¦ C*

ρ0(X)¦0

Smith’s results follow from the long exact homology sequences associated with these short 
exact sequences of chain complexes. In particular, Smith’s descent process is induced 
from the connecting homomorphisms of the homology of these sequences.

This modern description makes the result clearer, but it does not do justice to what 
Smith accomplished. Smith was working with Čech chains rather than finite-dimensional 
chain complexes. He had many technical difficulties with open coverings and their refine-
ments. Also, tools such as the algebraic theory of resolutions and the quasi-isomorphisms 
of chain complexes had not yet been developed. In spite of all this, Smith managed to 
discover and express fairly clearly the ingredients of homological algebra that he needed 
for his study. Not only had he focused on the correct statement, he also gave a proof in 
a technically difficult context that exposed essential aspects of the needed but yet-to-be-
developed homological algebra. Finally, Smith’s argument gives a strictly stronger result 
than the smooth or simplicial results, in that there are actions whose fixed point sets are 
not topologically equivalent to fixed point sets of smooth or simplicial actions.

the Final Word

There was a conference at Columbia in 1979 that brought together all of the main actors 
to explain their work and its application to resolving the Smith Conjecture. Smith sat 
front-row center for the entire conference and, ever the gentleman, paid rapt attention 
as the sophisticated geometry, algebra, and topology needed to resolve his conjecture was 
presented. At the end of the conference, he was asked for his thoughts. He replied, “I will 
try to make my next conjecture easier.”

Sadly, he died a year later on June 13, 1980.
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