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FRANK LUDVIG SPITZER

July 24, 1926–February 1, 1992

B Y  H A R R Y  K E S T E N

FRANK SPITZER WAS A highly original probabilist and a hu-
morous, charismatic person, who had warm relations

with students and colleagues. Much of his earlier work dealt
with the topics of random walk and Brownian motion, which
are quite familiar to probabilists. Spitzer invented or devel-
oped quite new aspects of these, such as fluctuation theory
and potential theory of random walk (more about these
later); however, his most influential work is undoubtedly
the creation of a good part of the theory of interacting
particle systems. Through the many elegant models that
Frank constructed and intriguing phenomena he demon-
strated, a whole new set of questions was raised. These have
attracted and stimulated a large number of young probabi-
lists and have made interacting particle systems one of the
most exciting and active subfields of probability today.

Frank Spitzer was born in Vienna, Austria, on July 24,
1926, into a Jewish family. His father was a lawyer. When
Frank was about twelve years old his parents sent him to a
summer camp for Jewish children in Sweden. Quite possi-
bly the intention of this camp was to bring out Jewish chil-
dren from Nazi-held or Nazi-threatened territory. Be that
as it may, Frank’s parents soon informed him that the situa-
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tion was too precarious in Austria for him to return, and
consequently Frank spent World War II in Sweden. He lived
there in succession with two Swedish families, learned Swed-
ish, and went through high school. He also attended Tekniska
Hogskolan in Stockholm for one year. Somehow during the
war his parents and sister made their way to the United
States through the unoccupied part of France and North
Africa. After the war Frank followed them to the United
States, where he soon entered the army. In 1947 after his
military service he entered the University of Michigan in
Ann Arbor. In part because Frank managed to talk the Uni-
versity of Michigan into giving him college credit for sev-
eral of his high school courses in Sweden, he completed his
B.A. and Ph.D. in Michigan in a mere six years (1947-53).
Part of this time he was actually away from Michigan. One
of his leaves was for an extended visit to Princeton, where
he met the famous probabilist William Feller.

For financial support Frank drove a cab for a while in
Ann Arbor. He also met and married his first wife, Jean
Wallach, in Ann Arbor. Jean and Frank had two children, a
daughter Karen and a son Timothy. In the mid-seventies
this marriage ended in divorce, and Frank started a second
marriage with Ingeborg Wald. Frank is survived by both his
partners and his two children.

Two classical stochastic processes are random walk and
Brownian motion. Random walk is often used as a model to
describe an evolving quantity which can be observed, or
which is meaningful, only for a discrete sequence of times.
The value of such a process at the k-th observation is then
typically denoted by Sk, with k running through the inte-
gers, or sometimes only through the positive integers. Xk+1
:= Sk+1 - Sk is then the increment of the process from the k-
th to the (k + 1)-th observation and Sk = S0 + ∑k

1Xi. In a
random walk the increments Xk are assumed to be indepen-
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dent and identically distributed. Roughly speaking, this means
that all Xk for different k have the same statistical proper-
ties, and that the value of any Xk has no influence on the
values of the Xj for j ≠ k. A traditional example which can
be modeled this way is a gambling situation in which one
repeatedly plays the same game; Xk represents the gain of a
given player during the k-th game. Brownian motion (also
called a Wiener process because Norbert Wiener was the
first to give a rigorous construction of this process) is used
in some situations in which it is more appropriate to build
a model with time varying continuously from –∞ to ∞ or
from 0 to ∞, rather than having time restricted to a discrete
sequence. A Brownian motion {B(t)}t≥0 has some fundamen-
tal similarities with random walk. For disjoint time intervals
[t1,t2] and [s1,s2], the increments B(t2) – B(t1) and B(s2) –
B(s1) are independent, and when the intervals have the
same length (t2 – t1 = s2 – s1), then these increments even
are identically distributed. In fact these increments all have
a Gaussian (also called normal) distribution. In the sim-
plest case the Brownian motion is one-dimensional, that is
B(t) is a real number. However, one also considers d-dimen-
sional Brownian motion in which B(t) is a d-dimensional
vector. Brownian motion has many fascinating properties.
For instance, its paths are continuous but nowhere differ-
entiable; for a while in the nineteenth century mathemati-
cians had even doubted that such functions exist.

Random walks as well as Brownian motion figured promi-
nently in Frank’s research.1 My impression is that he usu-
ally picked his own research problems and that little of his
work is due to direct guidance or influence of other proba-
bilists; however, from some of his remarks I gather that the
contacts with Feller, whom Frank met at Princeton, did have
an important influence on his thesis. In the preface of his
book (1964,1) Frank thanks “those of my teachers, Donald
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Darling, William Feller, and Samuel Karlin, who introduced
me to the theory of stochastic processes.” His thesis was on
two-dimensional Brownian motion {B(t)} (that means that
B(t) takes values in the plane). It had been known for some
time2 that a two-dimensional Brownian motion does not
visit the origin in the plane, but does come arbitrarily close
to the origin. In his thesis and a 1958 paper based on it,
Spitzer estimated how close a two-dimensional Brownian
motion comes to the origin during a long time interval.
Another peculiarity of two-dimensional Brownian motion is
that it winds around the origin an arbitrarily large number
of times. But it also unwinds itself and winds in the other
direction infinitely often during its history. Spitzer further
found the distribution of the winding number of the Brownian
motion at a given time. This has led to many further inves-
tigations of the joint distributions of winding numbers with
respect to more than one point. Yor3 gives an impression of
how far these investigations have gone. In (1964,2) Spitzer
returned to Brownian motion and gave a limit theorem for
the volume of the so-called Wiener sausage, the volume
swept out by a ball whose center undergoes a Brownian
motion (in dimension d ≥ 3).

Frank’s first academic position was at the California Insti-
tute of Technology as instructor from 1953 to 1955 and as
assistant professor from 1955 to 1958. While there he be-
came acquainted with Sparre Andersen’s remarkable pa-
pers4 which dealt with the maximum,

M Sn
k n

k=
≤ ≤

max ,
0

of a random walk {Sk}  and the time at which this maximum
is attained. Sparre Andersen showed that several relations
held for these quantities independently of the distribution
of the increments {Xi} . These properties derive entirely
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from the fact that X1,X2,...,Xn has the same distribution as
any rearrangement Xσ(1),Xσ(2),...,Xσ(n) of this sequence (σ
here is a permutation of {1,2,...,n} ). These results came as a
considerable surprise to the probability community at that
time, because limit relations for Mn so far had been based
on specific assumptions on the distribution of the Xi. Spitzer
realized what the basic combinatorial principles behind
Sparre Andersen’s results were and he greatly extended
Sparre Andersen’s papers. For instance, he showed that for
any sequence {x1,x2,...,xn} , the values taken on by the maxi-
mum

m x xn
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as σ and τ both run over the n! permutations of {1,2,...,n} .
(Spitzer [1956] credits Bohnenblust with help on this proof.)
When the xi are replaced by independent identically dis-
tributed random variables Xi, then the T is much easier to
deal with than the maxima. This led to the celebrated ex-
pression in (1956) for the generating function

E M tn
nexp[– ] ,λ

0

∞

∑
where E denotes the mathematical expectation or average.
This result is now known as the Pollaczek-Spitzer formula;
Pollaczek5 had in fact earlier derived the same formula by a
much more complicated route and under more restrictive
conditions. The general area of Frank’s (1956) paper is
now known as fluctuation theory.
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From the California Institute of Technology Frank moved
in 1958 to the University of Minnesota. Many of the earlier
limit theorems on maxima of random walk had been devel-
oped at Cornell (by Kac, Erdös, Chung, and Sparre Andersen)
and it was natural for Frank to visit Cornell at some time.
He did so during the summers of 1958 and 1960.6 This led
to a move in 1961 to Cornell as a full professor, and, with
the exception of a number of sabbatical and study leaves,
Frank stayed there for the rest of his life. For a number of
years at Cornell Frank worked on the development of po-
tential theory for random walk. Since the famous work of
Kakutani7 and Doob8 it had been known that there is a
close connection between classical potential theory and
Brownian motion. For instance, Green’s function in d di-
mensions has an immediate interpretation in terms of the
expected amount of time a d-dimensional Brownian motion
spends in subsets of d-space. This works well when d ≥ 3,
when the Brownian motion is transient (that is, stays out-
side any fixed ball eventually). Also, the distribution of the
position where a Brownian motion first hits a set can be
used to solve Dirichlet’s problem. Hunt9 extended this rela-
tionship to situations where the Brownian motion is replaced
by any transient Markov process. Spitzer then asked what
the analogous results were for random walk, and more im-
portantly, what the analogous results were for a recurrent
random walk. Such a random walk spends an infinite amount
of time in any ball and one cannot simply use the expected
amount of time spent in a subset as an analogue for Green’s
function, because this quantity is usually infinite. This led
Spitzer to study the so-called recurrent potential kernel.
For an integer valued random walk {Sn}  this is given by

a x P S x P Sn
n

n( ) [ { } – { }].= = =
=

∞

∑
0

0
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Frank’s deepest theorem of those years is probably that this
sum converges for any random walk on the integers, with-
out conditions on the distribution of the increments. He
further showed that this is indeed a “good” potential ker-
nel in the sense that one can write the solution of certain
equations in terms of this kernel, and he studied the as-
ymptotic behavior of this kernel. In turn, this allowed him
to obtain limit theorems for the distribution of the position
where a random walk first hits a given set. As a measure of
the difficulty of these results it should be pointed out that
it is still not known whether the series of a(x) always con-
verges absolutely (Spitzer only showed conditional conver-
gence). An excellent and readily accessible exposition of
these results (and many more) can be found in Spitzer’s
elegant book (1964,1).

In a random walk {Sn}, Sn is sometimes interpreted as the
position of a particle at time n. The assumption that the
increments of the random walk are independent and iden-
tically distributed is reasonable when the particle moves
entirely without influence of other particles. It is, however,
a very simplifying assumption and is not justified in most
statistical mechanics models. Even today it still is too diffi-
cult to analyze probability models which realistically deal
with the interactions and collisions of molecules in a gas,
say; however, Harris10 had already considered some simpli-
fied models which incorporated collisions for particles which
moved on the line. Perhaps stimulated by this, but in any
case also by his desire to get away from the classical inde-
pendence assumptions and to find new phenomena, Spitzer
began in the late sixties to investigate a number of probabi-
listic models in which there are more interactions. In this
vein he invented the “random walk in random environment”
model. For a random walk in random environment the dis-
tribution of the increment Xk+1 depends on the position at
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time k, Sk. This dependence is itself random. Formally, one
first chooses a random environment which prescribes for
each possible position x, what the distribution of Xk+1 will
be when Sk = x (for some k). Once the environment is fixed
the particle moves in this environment according to the
transition rules specified by the environment. The model
and its many later generalizations are of considerable inter-
est and challenge to probabilists because of their non-Mark-
ovian nature; the full sequence of past observations gives us
more information about the environment than just the last
observations. In fact, by observing the successive positions
of the random walk one finds out more and more about
the environment even though the environment itself can-
not be observed directly. During a visit to the Soviet Union
in the early seventies Spitzer found that the same model
had been independently invented there as a highly simpli-
fied and mathematicized model for DNA replication. This
led to the joint paper (1975,4) with one author from the
Soviet Union whom Frank met on his trip. Random walk in
random environment is a model in which randomness is
introduced in two stages, first in the choice of the environ-
ment (or equivalently, parameters for the transition mecha-
nism), and then in the motion of the particle. Since 1975
probability models with such “two-stage” randomness have
become very fashionable in probability as well as statistical
physics.

More or less in the same period Spitzer also began to
study models in which many (often infinitely many) par-
ticles interact locally. Nowadays we call these models “inter-
acting particle systems.” Closely related investigations were
taking place in the Soviet Union by Dobrushin and his
school.11 Dobrushin’s work was directly motivated by statis-
tical physics, in particular by the Ising model for magne-
tism. Dobrushin was one of the people who gave a precise
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definition of Gibbs states (which generalize the Ising model)
and who has contributed heavily to the study of their prop-
erties. It is not clear how much Frank had statistical me-
chanics in mind when he started looking at interacting par-
ticle systems, but it soon became an important factor. Various
examples in interacting particle systems represent time evo-
lutions which have well known statistical mechanics models
for their equilibrium state. Like statistical mechanics mod-
els, several interacting particle systems exhibit a phase tran-
sition. In fact, it was precisely for such properties that Frank
and Dobrushin selected some of their models for study.
Because of this, interacting particle systems are responsible,
in part, for the renewed interaction and cooperation be-
tween statistical physicists and probabilists taking place these
days. Even though this is probably the area in which Frank
had the greatest influence we have to restrict ourselves here
to just two illustrations of models which he invented.12 The
first is the simple exclusion model which he introduced in
(1970). Assume that there are infinitely many particles with
positions in the integers. Each particle decides on its own
(without influence from the other particles) when it would
like to change position and where it would like to move.
The interaction now comes from the single rule that at any
time no two particles are allowed to occupy the same site.
Thus, if a particle at position x decides at time t that it
wants to move to site y, but y happens to be occupied at
time t, then this move is suppressed and the particle at x
stays there (until its next attempt to move somewhere). To
complete the description of the model one must of course
specify when and how a particle wants to jump. Often one
assumes that these jumps follow a continuous time ana-
logue of a random walk (or more generally a Markov pro-
cess). In the exclusion model no particles are created or
disappear. This is not the case for the second model, the
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so-called “nearest particle system.” Again one looks at a
system of particles on the integers. But now each particle
that is present can disappear at a fixed death rate δ and
also particles can be born at an unoccupied site x at a rate
which is assumed to be a function of the distances to the
nearest occupied sites on the left and right of x. The first
question for these models is whether there exists a decent
process which corresponds to the above description; the
trouble is that in theory in the exclusion model infinitely
many particles may try to jump to a given site in finite time.
Similarly, in the nearest particle system an infinite chain of
births and deaths could conceivably occur in a finite time
interval. Frank did not do much work on this existence
problem by himself, but it has now been adequately solved.
(See Liggett’s book mentioned in note 12 for an exposition
of this. This book also has many results about the nearest
particle system to which Liggett himself has made major
contributions.)

The next questions considered by Frank for various inter-
acting particle systems were what the equilibrium distribu-
tions are for such processes and whether the state of the
process converges to such an equilibrium distribution from
suitable initial states. In many examples there is an ana-
logue of a phase transition; for some parameter values in
the transition mechanism there is a unique equilibrium state
and for others there are more than one. The unraveling of
these “phase diagrams” and the description of the domains
of attraction of the various equilibrium distributions has
been a fundamental goal of the field. For a number of
examples Frank found all or some equilibrium states (1970,
1977). Such explicit results pleased him greatly. In other
cases he discovered a so-called duality relation which is a
basic tool for proving convergence to equilibrium. The theory
has become very rich and many other questions have arisen.
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An important topic nowadays is to describe how the system
approaches equilibrium from suitable initial states. By tak-
ing suitable scaling limits this can often be described
by partial differential equations for a local particle density
(hydrodynamic limits).13 One also tries to estimate prob-
abilities of large deviations from equilibrium behavior and
questions of metastability;14 that is, if the system has one
equilibrium state but starts out “far away” from this equilib-
rium state, how long can it stay far away? Another direction
is to introduce particles of different types and to investigate
when there are equilibrium states in which several of the
types can coexist.15 This direction has been stimulated by
biological interpretations. As mentioned before, interact-
ing particle systems are a very active, exciting area, and
Frank was one of the founding fathers.

Spitzer was elected to the National Academy of Sciences
in 1981 and held a Guggenheim fellowship in 1965-66. He
was invited for many prestigious lectures, including a lec-
ture at the International Congress of Mathematicians at
Vancouver in 1974 and the Wald Lectures for the Institute
of Mathematical Statistics in 1979. For almost twenty years
he was on the editorial board of one of the major probabil-
ity journals, the Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete and its successor, Probability Theory and Re-
lated Fields. He also taught special courses at various sum-
mer schools.

Frank had great enthusiasm for his field. Not only did he
love his own work, but, what is much rarer, he knew how to
show genuine appreciation for the work of others. I often
felt much encouraged by his comments, and from various
messages that I received from colleagues and former stu-
dents after his death, I know they felt the same. Any secre-
tiveness about his ongoing research was totally alien to Frank.
On the contrary, he usually tried to draw colleagues and
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students into cooperating with him. In this way I became
his coauthor on a number of papers and even owe some
papers by myself to Frank’s questions and stimulation. He
was quite generous with his time and on many occasions
helped his students and teaching assistants with
nonmathematical problems. Because of this and his sponta-
neity many people close to Frank felt great warmth towards
him. Until he developed Parkinson’s disease he was an in-
spired teacher. In fact, he even enjoyed teaching
nonmathematical subjects. He taught me the rudiments of
skiing and how to use the T bar and ski lift on the local ski
slope. Frank knew how to help students over hurdles and
once volunteered to give a pep talk to one of my Ph.D.
students who seemed to have given up on his thesis work.
Frank’s talk had the desired effect and the student did fin-
ish his Ph.D. Of course, Frank also had considerable influ-
ence on his own Ph.D. students, and several of them have
now made a career for themselves in interacting particle
systems. A strong sense of elegance guided Frank in his
research. For this reason he worked so hard to prove the
convergence of the series for the potential kernel a(x) men-
tioned before, without any conditions on the distribution
of the increments. The great attraction of this result is that
it has no extra conditions. Frank was always toying with
probability models, looking for new phenomena. He did
not particularly like extending the validity of some known
results if this did not lead to some surprises. Once he com-
plained about a visitor who had treated him to several black-
boards full of formulae. “What did he want me to do? Eat a
bunch of formulae?,” Frank asked me. Probably because of
these standards of his, he did not publish all that many
papers (about 50), but he has helped shape probability theory
as we know it today.

Frank had a great love for the outdoors, and, even though
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he never became a real expert, he was an avid mushroom
hunter. He loved to ski. In fact, in his office he displayed
with pride a list of times for a downhill run for a number of
mathematicians during a “race” in which Frank had partici-
pated during his visit to the Soviet Union. He often went
hiking, especially in the mountains, and cross-country ski-
ing. He regularly went jogging almost until the end of his
life, even after this became difficult because of his struggle
with Parkinson’s disease. In addition to Parkinson’s disease
Frank contracted bladder cancer. The immediate cause of
his death was a urinary tract infection which seemed to
have been related to the chemotherapy he was undergoing
for his cancer.

I AM INDEBTED TO Jean Spitzer for a number of biographical
data and to Thomas Liggett for some comments about Spitzer’s
work on interacting particle systems. I thank Geoffrey Grimmett for
the photograph of Frank Spitzer and for several helpful suggestions
for this memoir.
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