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HERMANN WEYL

November 9, 1885–December 9, 1955

B Y  M I C H A E L  A T I Y A H

HERMANN WEYL WAS one of the greatest mathematicians of
the first half of the twentieth century. He made funda-

mental contributions to most branches of mathematics, and
he also took a serious interest in theoretical physics.

It is somewhat unusual to write a biographical memoir
nearly 50 years after the death of the subject, and this presents
me with both difficulties and opportunities. The difficulties
are obvious: I had essentially no personal contact with Weyl,
hearing him lecture only once at the international congress
in Amsterdam in 1954, when I was a research student. His
contemporaries are long since gone and only a few personal
reminiscences survive. On the other hand the passage of
time makes it easier to assess the long-term significance of
Weyl’s work, to see how his ideas have influenced his suc-
cessors and helped to shape mathematics and physics in
the second half of the twentieth century. In fact, the last
50 years have seen a remarkable blossoming of just those
areas that Weyl initiated. In retrospect one might almost
say that he defined the agenda and provided the proper
framework for what followed.

I shall therefore take the liberty of connecting Weyl’s
own work with subsequent developments. This means that I
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shall say less about certain aspects of Weyl’s work where my
own competence runs out or where subsequent work may
not have been so productive. In particular I shall omit any
account of his important work on singular differential equa-
tions, number theory, and convex bodies. I shall also say
little about his contributions to the foundations of math-
ematics. However, the important papers that he wrote in all
these areas are included in the selected bibliography.

Hermann Weyl was born in the small town of Elmshorn
near Hamburg, the son of Ludwig and Anna Weyl. In 1904
he went to Göttingen University and immediately fell under
the spell of the great David Hilbert. As he described it later,

I resolved to study whatever this man had written. At the end of my first
year I went home with the “Zahlbericht” under my arm, and during the
summer vacation I worked my way through it—without any previous knowl-
edge of elementary number theory or Galois theory. These were the happiest
months of my life, whose shine, across years burdened with our common
share of doubt and failure, still comforts my soul.

In 1913 he moved to a chair at the Federal Institute of
Technology in Zurich, where Einstein was developing his
theory of general relativity. Sometime later this aroused Weyl’s
interest, and physics became and remained one of his central
concerns.

When Hilbert retired in 1930, Weyl moved to Göttingen
to take his chair, but the rise of the Nazis persuaded him in
1933 to accept a position at the newly formed Institute for
Advanced Study in Princeton, where Einstein also went. Here
Weyl found a very congenial working environment where
he was able to guide and influence the younger generation
of mathematicians, a task for which he was admirably suited.

At the time of his move to Zurich he married Helene
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Joseph, a talented translator of Spanish literature. They had
two sons. Helene died in 1948, and in 1950 Weyl married
Ellen Bär from Zurich.

Weyl published in a great variety of fields and he delib-
erately eschewed specialization. He explained his attitude
as follows:

My own mathematical works are always quite unsystematic, without mode
or connection. Expression and shape are almost more to me than knowl-
edge itself. But I believe that, leaving aside my own peculiar nature, there
is in mathematics itself, in contrast to the experimental disciplines, a char-
acter which is nearer to that of free creative art.

As this quotation (and others) illustrate, Weyl was both
a philosopher and a literary stylist. His interest in philosophy
led him to become involved in the foundations of math-
ematics, one of the major interests of the time that saw
great battles between the formalists led by Hilbert and the
intuitionists under Brouwer. The essential difference was
that the intuitionists only accepted as valid those results
that could be established constructively in a finite number
of steps. Weyl eventually and somewhat reluctantly sided
with Brouwer. But his broader philosophical interests meant
that he was always aware of the wider implications of his
mathematical work and in particular of its relation to physics.
He expounded his philosophical views on physics in a widely
read book (1918).

His literary, almost poetic, style is highly unusual in a
mathematician and only someone of his stature could expect
to get away with it. Even the enforced transition from German
to English resulting from his move to Princeton did not
deter him. In his book on The Classical Groups (1939) his
introduction recognizes this transition in typical form by
asserting that “the gods have imposed upon my writing the
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yoke of a foreign language that was not sung at my cradle.”
Later in the text when discussing the rotation group he
writes that “only with spinors do we strike that level in the
theory of its representations on which Euclid himself, flour-
ishing ruler and compass, so deftly moves in the realm of
geometric figures. In some way Euclid’s geometry must be
deeply connected with the existence of the spin representa-
tion.” Subsequent work on spinors only reinforces the power
of these words, written though they were in a foreign tongue.

Despite the diversity of his interests it is analysis and
geometry with their application to physics that provide the
core of his work, though he could be an algebraist with
style as in The Classical Groups and his tendency to unify
mathematics makes nonsense of any simplistic divisions. His
interest in the spectral properties of differential operators
(their eigenvalues or frequencies) was an early love and
persisted to the end. In fact, one of his first major achieve-
ments was to establish that the leading term in the growth
of the eigenvalues (for the Laplace operator in a bounded
domain) was given by the volume, a result that was pre-
dicted by physicists on the basis of the relation between
classical and quantum mechanics. Weyl followed with interest
the subsequent refinement of his work that gave more detailed
information about the asymptotic behaviour of the eigen-
values, a subject popularized by Marc Kac under the title
“Can You Hear the Shape of a Drum?” After Weyl’s death
the subject developed much further, leading among other
things to the heat equation proof of the Atiyah-Singer index
theorem (Atiyah, Bott, and Patodi, 1973) and to the regu-
larized determinants that became a basic tool in quantum
field theory.

In his Gibbs lecture to the American Mathematical Society
(1950) Weyl set out his views on the eigenvalue problem in
the following Delphic utterance:
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I feel that these informations about the proper oscillations of a membrane,
valuable as they are, are still very incomplete. I have certain conjectures of
what a complete analysis of their asymptotic behaviour should aim at but,
since for more than 35 years I have made no serious effort to prove them, I
think I had better keep them to myself.

Whatever Weyl had in mind it is clear that he would have
thoroughly appreciated the developments of recent times,
particularly in the way the physics, analysis, and geometry
have been interwoven.

Another early work was his now famous book on Riemann
surfaces (1913). Here we see Weyl at his majestic best,
imposing coherence, elegance, and order on a classical subject
and thereby laying proper foundations for its future devel-
opment. Already with the work of Riemann it was clear that
the classical theory of functions of a complex variable could
not be confined to the complex plane: branched coverings
of the plane were necessary, but it was Weyl who put this
into its proper form, getting away from the complex plane
by introducing the notion of an abstract surface. Coming
when it did in 1913 it was the right book at the right time,
providing the model for all subsequent work on higher-
dimensional manifolds. With its emphasis on vector spaces
(which Weyl was the first to define) it provided the right
language for both geometry and algebra. It also prepared
the way for the topologists who followed.

Without Weyl’s book on Riemann surfaces it is impos-
sible to imagine Hodge’s theory of harmonic forms (Hodge,
1941), which came 20 years later. Weyl was one of the first
to recognize the importance of Hodge’s work and he con-
tributed an essential step for the analytical part of the proof.
He described Hodge’s theory as “one of the great land-
marks in the history of science in the present century.”

In 1954 at the International Congress of Mathematicians
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in Amsterdam Weyl, as chairman of the Fields Medal Com-
mittee, gave the speech describing the work of the two
medallists: Kunihiko Kodaira and Jean-Pierre Serre. Kodaira
had also independently completed Hodge’s work and had
gone on to apply it with great skill to prove concrete results
in algebraic geometry. Serre had contributed through his
work on the newly developed theory of sheaves. Despite his
age (he was 69) Weyl gave a detailed and enthusiastic account
of all this work, which by combining geometry and analysis
in the spirit of his own earlier work was very close to his
heart. This is clearly conveyed in his words addressed to
Kodaira:

Your work has more than one connection with what I tried to do in my
younger years; but you have reached heights of which I never dreamt.
Since you came to Princeton in 1949 it has been one of the greatest joys of
my life to watch your mathematical development.

Turning to Serre, whose work in homotopy theory he had
also described in detail, he said,

I have no such close personal relation to you, Dr. Serre, and your research,
but let me say that never before have I witnessed such a brilliant ascension
of a star in the mathematical sky as yours. The mathematical community is
proud of the work you both have done. It shows that the old gnarled tree
of mathematics is still full of sap and life.

As a young member of the large audience on that occasion
I was dazzled by Weyl’s performance and inspired by his
oratory.

If geometry and analysis were at the core of Weyl’s
interests, his urge to organize and synthesize made it per-
haps inevitable that he would leave his mark on the theory
of groups and their representations. These are the embodi-
ment of symmetry, a topic that Weyl expounded on toward
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the end of his life in an elegant and popular book with that
title (1952). The theory of continuous groups, developed
by the nineteenth-century Norwegian mathematician Sophus
Lie had been continued and extensively developed by Elie
Cartan. Weyl took up the topic anew and brought his own
point of view, with its emphasis on the global aspect of Lie
groups. For his predecessors all the essential formulae were
local (leading to the infinitesimal form, the Lie algebra),
but Weyl emphasized the whole group, a manifold with, in
particular, interesting topology. Here we see a link with his
approach to Riemann surfaces: Weyl liked to see the big
picture, the manifold or group in the round. This global
view had many technical advantages and in particular for
compact groups (such as the important group of rotations),
one could average by integrating over the group. Essentially
this made the theory very similar to that of finite groups,
which was already well established. One famous consequence
of this technique is the Peter-Weyl theorem, which decom-
poses the space of functions on the group into matrix blocks
given by the irreducible representations. Here Weyl, as always,
used his knowledge of differential equations in an essential
way.

To pass from the compact groups to the usual linear
groups of matrices Weyl employed what he described as the
“unitarian trick,” a simple but effective idea that has had a
fruitful development beyond the narrow confines of pure
group theory. In the hands of Simon Donaldson and others
it has been a powerful tool in the study of moduli spaces,
where it can be viewed as a geometric extension of Weyl’s
initial step.

One of the most elegant of Weyl’s theorems was his
beautiful explicit formula for the character of the irreduc-
ible representations. This formula has kept reappearing in
subsequent work. For example, it appears as a fixed-point
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formula in the work of Atiyah and Bott (1966) on elliptic
operators where it unites two of Weyl’s main interests. It
also appears in generalized form (Pressley and Segal, 1986)
in the theory of representations of loop groups, infinite-
dimensional groups of much interest in current physics.

Weyl was a strong believer in the overall unity of math-
ematics, not only across sub-disciplines but also across
generations. For him the best of the past was not forgotten,
but was subsumed and refined by the mathematics of the
present. His book The Classical Groups was written to bring
out this historical continuity. He had been criticized in his
work on representation theory for ignoring the great classical
subject of invariant theory that had so preoccupied algebraists
in the nineteenth century. The search for invariants, algebraic
formulae that had an intrinsic geometric meaning, had
ground to a halt when David Hilbert as a young man had
proved that there was always a finite set of basic invariants.
Weyl as a disciple of Hilbert viewed this as killing the sub-
ject as traditionally understood. On the other hand he wanted
to show how classical invariant theory should now be viewed
in the light of modern algebra. The Classical Groups is his
answer, where he skilfully combines old and new in a rich
texture that has to be read and re-read many times. It is not
a linear book with a beginning, middle, and end. It is more
like an elaborate painting that has to be studied from dif-
ferent angles and in different lights. It is the despair of the
student and the delight of the professor.

It is a tribute to Weyl’s outlook that invariant theory has
recovered from Hilbert’s onslaught and is again a flourishing
subject. But now it is firmly in the Weyl mold and has been
given a fresh impetus by David Mumford under the heading
of geometric invariant theory (Mumford, Fogarty, and F.
Kirwan, 1994). This gives a systematic way of studying vari-
ous important classification problems leading to moduli (or
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parameter) spaces, and many of these have turned up natu-
rally in quantum field theory. Again, Weyl would have been
delighted.

When theoretical physics was revolutionized by the advent
of quantum mechanics in the 1920s, it was fortunate that
there were then two outstanding mathematicians who were
available to provide the mathematical underpinning and
interpretation. John von Neumann put quantum mechanics
into its now standard framework of Hilbert spaces and self-
adjoint operators while Weyl expounded on the role of
symmetry in his influential book on group theory and
quantum mechanics (1928). In fact, the representation theory
of Lie groups is tailor-made for quantum mechanics and
Weyl’s definitive work on representation theory together
with his interest in spectral theory made him the ideal
exponent of the new physics.

Von Neumann was some years younger than Weyl, but
he was a prodigy with a formidable reputation. According
to Armand Borel, who heard the story from M. Plancherel
that whenever Weyl was going to give a lecture at Zurich,
he approached the lecture room with trepidation in case
von Neumann was in the audience. He was sure to ask
penetrating questions that Weyl would be unable to an-
swer! This fear did not prevent Weyl from arranging for
von Neumann to be invited to join him later at the Institute
for Advanced Study. As his speech at the Amsterdam con-
gress showed, Weyl was always keen to identify talent and
provide encouragement for the younger generation. Raoul
Bott recalls (Bott, 1988) how kindly Weyl dealt with him on
their first encounter, when Bott explained his latest result,
only to find out that Weyl had done it all 25 years before.
Bott also points out that Weyl as a person was not the Olym-
pian figure that he appeared to be in print. He could be
informal, amusing, and friendly.
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Quantum mechanics was not Weyl’s first encounter with
physics. He had already learned about Einstein’s general
relativity, which explained gravity in geometrical terms. Weyl
had the idea of extending Einstein’s theory to incorporate
electromagnetism, so that Maxwell’s equations would also
acquire geometrical significance. Weyl’s idea was to intro-
duce a scale, or gauge, that varied from point to point and
whose variation round a closed path in space-time would
encapsulate the electromagnetic force. Almost immediately
(in fact in an appendix to Weyl’s paper) Einstein criticized
the idea on physical grounds. If Weyl was right, then the
size of a particle would depend on its past history, whereas
experiments showed that all atoms of hydrogen, say, had
identical properties. One might have thought that such a
telling criticism from someone of Einstein’s standing would
have discouraged Weyl and that he might have withdrawn
his paper. It is a tribute to his mathematical insight and
self-confidence that he went ahead. The idea was too beautiful
to discard, and Maxwell’s equations came out like magic.
As often happens, a good idea lives to fight another day
and only a few years later, with the advent of quantum
mechanics, a new physical interpretation was put on Weyl’s
calculations. Oscar Klein proposed that Weyl’s gauge should
be viewed as a phase and that space-time should be viewed
as having a fifth dimension consisting of a very small circle.
Mathematically Weyl’s gauge variable gets multiplied by i
(the square root of –1) and is periodic. This point of view,
called the Kaluza-Klein theory (Theodor Kaluza made the
first steps after Weyl) is now generally accepted. Moreover,
it is just the first stage in the enlargement of ordinary space-
time. To include the other nuclear forces we need even
more dimensions and current research centres on a total
space-time dimension of 10 or 11.

Independently of these extra dimensions Weyl’s gauge
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theory description of Maxwell’s equations is now applied to
local symmetry groups other than the circle. This leads to
the non-Abelian gauge theories, which are the basis of the
standard model of elementary particle physics.

This gauge theory, the infant that was nearly thrown out
with the bath water, has grown up into sturdy adulthood.
Not only is it the framework of modern physics but it is also
one of the most novel and exciting areas in modern math-
ematics. One notable example is the theory of 4-dimensional
manifolds due to Simon Donaldson (Donaldson and
Kronheimer, 1990), which emerged from physics but has
turned out to be of profound importance to geometry. More
recently, an alternative interpretation uses spinors coupled
non-linearly to electromagnetism, a twist that would cer-
tainly have captured the imagination of Hermann Weyl and
justifies his remarks about the geometrical significance of
spinors.

The past 25 years have seen the rise of gauge theories—
Kaluza-Klein models of high dimensions, string theories,
and now M theory, as physicists grapple with the challenge
of combining all the basic forces of nature into one all
embracing theory. This requires sophisticated mathematics
involving Lie groups, manifolds, differential operators, all
of which are part of Weyl’s inheritance. There is no doubt
that he would have been an enthusiastic supporter and
admirer of this fusion of mathematics and physics. No other
mathematician could claim to have initiated more of the
theories that are now being exploited. His vision has stood
the test of time.

My thanks are due to Raoul Bott and Armand Borel for personal
reminiscences. I have also relied on the obituary articles by Chevalley-
Weil and by Newman cited in the references.
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