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Gordon Thomas Whybum was born at Lewisville, Texas on January 7, 1904, the1 
son of Thomas and Eugenia Elizabeth Whybum. After attending the public schools of 
Lewisville, he went to the University of Texas, where he obtained the A.B. (1925), M.A. 
(1926) and PhD. (1927). In 1925, he married Lucille Smith, also from Lewisville and 
a mathematics student at Texas. His elder brother, William Marvin, was during the 
same years a mathematics student at Texas and on the way to his career in mathematics 
and administration. During the years 1927-1929, Whyburn was Adjunct Professor of 
Mathematics at Texas. He held a Guggenheim Fellowship in 1929-1930 and spent the 
year in Vienna, with trips to such European centers as Warsaw. Upon his return to the 
USA, he became an associate professor in mathematics at The Johns Hopkins University. 

1. This memoir appears by permission of the American Mathematical Society, and was originally published as 
Floyd, E. E. and F. B. Jones. Gordon T. Whyburn 1904-1969. Bull. Amer. Math. Soc. 77, no. 1 (January 1971): 
57-72. ©1971 American Mathematical Society.   

Mathematician Gordon Whyburn1 developed a number 
of new concepts in the field of topology. He introduced 
work on cyclic elements, the structure of continua, and 
the notion of convergents in space. He also pioneered the 
development of interior transformations that are general-
izations of analytic functions.

Whyburn attended the University of Texas and earned his 
PhD in 1927. In 1929 he became an associate professor at 
Johns Hopkins University, where he remained until 1934, 
when he moved to the University of Virginia. He spent the 
remainder of his academic career at Virginia, serving as a 
professor of mathematics and chairman of the School of 
Mathematics. He was a Colloquium speaker of the Amer-
ican Mathematical Society in 1940 and served as vice 
president of the American Association for the Advance-
ment of Science. 
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In 1934, Whyburn accepted the chairmanship of the Department of Mathematics at 
the University of Virginia and became a professor of mathematics there. He lived in 
Charlottesville for the rest of his life, except for frequent summers teaching at Stanford, 
University of California, UCLA, and the University of Colorado, and the year 1952-
1953 on leave at Stanford and 1956-1957 on leave in England and Switzer land. The 
Whyburn’s only child, Kenneth Gordon, who served on the faculty in mathematics at 
the University of Washington, was born in 1944. Whyburn held the chairmanship until 
1966, when he became the first member of the new Center for Advanced Studies in the 
Sciences at Virginia as well as retaining his position as Alumni Professor of Mathematics. 
He suffered a heart attack in 1966, but re covered and resumed a full schedule of teaching 
and research until his death of a sudden heart attack on September 8, 1969.

Whyburn was a very private man. He was quiet and shy, and remarkably gentle with 
students and family. But in moments of administrative crisis, he could be extremely 
tough when he had to be. A man of brilliance, with a remarkable speed in research, he 
nevertheless believed deeply in continuity and patience, and that it was the total record 
of accomplishment of a lifetime that mattered most.

His career as a leader

Whyburn was a brilliant scholar from the first. As a young chemistry student he took 
calculus from R. L. Moore and continued to take Moore’s courses and began to do 
research for Moore in the succeeding years. Moore kept steady pressure on him to 
switch to mathematics. After obtaining his Master’s degree in chemistry, he did switch 
and obtained his Ph.D. in mathematics a year later. By that time he had already done a 
remarkable amount of research.

A year as a Guggenheim Fellow in Europe, when Whyburn was 25, was of particular 
importance to the development of his outlook on the mathematics world. He formed 
close ties with Kuratowski, Sierpinski, and Hahn, and came to know Vietoris, Stoilow, 
and numerous other European topologists. These contacts, together with the view of 
the young and ambitious American mathematical world of that time, helped give him a 
broad picture of the mathematical community.

In 1933, the University of Virginia began to interest Whyburn in a post as chairman 
and professor. The university was quite small and proud of its tradition as Jefferson’s 
university. Its three professors of mathematics were retiring shortly. The university sought 
to use the opportunity to establish a first-rate research and graduate department. There 
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were very few PhD programs in the South, most of them were of token character, and 
only the programs at Texas and Rice were in any sense distinguished. Whyburn became 
excited about the prospects. For one thing, there were a few first-rate traditions in math-
ematics at Virginia—Sylvester had been a young faculty mem ber there (although not a 
very happy one), the Annals of Mathematics had been founded there. Moreover he was 
excited by the prospect of locating first-rate graduate departments more widely about the 
country, and came to see Virginia as a place for him to do his part.

The situation at Virginia inspired from Whyburn an ideal plan to fit the circumstances. 
One would get together a few young and congenial mathematicians of topflight accom-
plishments. Their fields should be differing but overlapping so that there would be 
beneficial contacts between them and so that the students would not be confronted with 
choosing between absolutely unrelated areas. The plan worked beautifully. E. J. McShane 
joined the Department in 1935, and G. A. Hedlund in 1939. The three of them ran a 
program of charm and high standards. The faculty never numbered more than six, the 
library was minimal, the facilities were very imperfect. But these young, vigorous men of 
high accomplishments ran an extremely effective program nevertheless.

In the years after World War II the changes in American academia began to make their 
mark. Enrollments climbed, staffs grew, research specialization increased. Whyburn 
seemed to feel deeply that if the department was not to be transient then steady and 
continuous leadership was required from him. Until 1966 he continued to serve as 
chairman. For all but a few years he had no assistant chairman, but simply did many 
of the necessary details himself. For establishing and nurturing a research department; 
Whyburn ranks very high in contributions to Southern mathematics.

However, Whyburn’s goal was not at all to serve Southern math ematics but to serve 
American mathematics as a whole. He must have come to know reasonably early his 
talent for organization —complete sympathy for first-rate research, a calm and dispas-
sionate point of view, extreme quickness in getting to the core of an argument, will-
ingness to handle dirty details. As the years passed, he contributed more and more of his 
talents to national organizations, most of all to the American Mathematical Society.

We will begin here with one of his early big committee assignments, in 1938-1939 as a 
member of the committee to make recommendations to the Society on an abstracting 
journal. With German periodicals perilously near being subject to Nazi orders, feelings 
were high that an American review journal was needed. On more permanent grounds as 
well, the argument was won and Mathematical Reviews came into being.



5

GORDON WHYBURN

As the war came on, Whyburn became very concerned that a generation of young math-
ematicians not be wiped out, as a generation of English mathematicians had been in 
World War I. He also became concerned that American universities be kept alive and, in 
some minimal sense, functioning. In working to keep the University of Virginia open, he 
served as Director of the Premeteorological Training Program conducted at the university 
for the Army Air Forces. Nationally he became a member of the War Policy Committee, 
a joint committee of the AMS and the MAA. His interest was in getting mathematicians 
placed in universities or in wartime research; definitely the infantry was not the proper 
place. Later on during the Korean War he was to serve on the Selective Service Advisory 
Committee on Specialized Personnel, and with the same point of view.

His most concentrated period of service to the American Mathematical Society was no 
doubt the years 1950-1954. In the years 1950-1952 he was a member of the Transactions 
editorial board, and in 1951-1952 was Managing Editor of the Transactions. In 1952 
he was President Elect of the Society and in 1953-1954 served as President. The years 
were interesting ones—the publication problems were mounting in their inexorable 
way, federal support for research was coming into being, the lingering political problems 
from the McCarthy era were working themselves out, the Society and the mathematical 
community were growing. After these years he continued to serve for several years as 
member of the Board of Trustees and to take a keen interest in the Society, but no doubt 
felt that he had finished his turn of concentrated work for the Society.

He also spent a fair amount of time in Washington in the fifties. In 1952 he was on the 
NSF Graduate Fellowships selection panel, and in 1953-1955 was chairman of that 
panel. Thereafter he served on the post-doctoral panel. In the years 1956-1959, he was 
on the Mathematical, Physical and Engineering Sciences Divisional Committee of the 
NSF. Throughout he kept up a lively interest in the development of the NSF. In an 
unusual way he was interested in the pre dominance of first-rate research, and at the same 
time for regional development.

After the busy years of the fifties, he relaxed his interest in the flow of national mathe-
matics somewhat, but in a typical way would always be willing to put in a good word for 
principles he considered paramount, such as quality or basic research.

As was inevitable for one of such accomplishment in research as well as in administration 
and teaching, Whyburn received numerous awards and honors. In 1938 he received 
the Chauvenet Prize of the MAA for his expository paper [1936], “On the structure of 
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continua.” In 1940, he was Colloquium Lecturer of the AMS; his book, Analytic Topology 
[1942], grew out of those lectures. He was awarded the Sc.D. degree by Washington 
and Lee University in 1949. In 1951 he became a member of the National Academy 
of Sciences. In 1968 he received the Thomas Jefferson Award, the top award of the 
University of Virginia.

His research

Although Whyburn’s total body of mathematical research has a considerable unity 
about it, it is nevertheless desirable to divide it into a few categories. Needless to say, the 
following concerns only a sampling of his work.

Cyclic elements and the structure of continua

By a continuum we mean a compact connected metric space. Whyburn’s early 
research involved understanding the full details about the connections between a plane 
continuum, oftentimes assumed to be locally connected, and the regions into which it 
divides the plane. In the course of this effort, he came upon a structure theory for locally 
connected plane continua. Within a very few years, this theory turned out to hold for 
arbitrary locally connected continua. The applications for plane continua turned out to 
be just one facet of the theory. We first indicate the final result, cyclic element theory 
[1930d], [1942].

Let X be a locally connected continuum. A point x ∈ X is a cut point if X − x  fails 
to be connected; it is an end point if for each ∈>0 there exists an open set U with 
x ∈U and diam U <∈ such that ∂U =U −U consists of a single point. Define
X to be cyclic if any two points of X are contained in a simple closed curve of X .  In 
the cyclic connectedness theorem [1927b], [1931a ], Whyburn proved that a locally 
connected continuum is cyclic if and only if it has no cut points. The basic idea of cyclic 
element theory can be put this way: one can understand a locally connected continuum 
completely if one can understand the locally connected cyclic subcontinua which are 
maximal with respect to being cyclic.

Define a true cyclic element of X to be a connected subset, consisting of more than one 
point, which is maximal with respect to having no cut points of itself.

THEOREM. Let X be a locally connected continuum, and let x ∈ X be neither a cut 
point nor an end point. Then x is contained in a unique true cyclic element. A true cyclic 
element is a locally connected cyclic con tinuum. X has at most a countable number of 
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true cyclic elements, and their diameters tend to zero. Any two of them intersect in at 
most a point, and the point of intersection must be a cut point.

Among the most basic of the papers of Whyburn which can be classified as contrib-
uting to cyclic element theory are [1926], [1927a], [1927b], [1927c], [1928a], [1928b], 
[1928c], [1930a], [1930b], [1930c], [1930d], [1931a], [1931b], [1934a], [1939].

And in addition to the broad scope of the theory, these papers are replete with lemmas 
and theorems which have found many uses else  where, e.g., the cut point order theorem.

An end point of a continuum X is of order 1 in X .  A non-end point x ∈ X is of order 
2 in X if for each ∈>0  there exists an open set U with x ∈U  such that diam U <∈
and ∂U consists of exactly two points.

THEOREM. All except possibly a countable number of the cut points of a continuum 
X are of order 2 in X .

Whyburn generalized this theorem in at least two directions, to noncompact connected 
spaces in particular.

At the same time as the basic cyclic element theory was developing, the applications were 
being made. Define a boundary curve to be a locally connected continuum each true 
cyclic element of which is a simple closed curve. If X is a locally connected continuum in 
the 2-sphere S 2 which is the boundary of a connected open set, then X is a boundary curve 
[1928c]. Given a boundary curve X ,  there is a homeomorphic image X ' of X  which 
is the boundary of a connected open set (this is due to Ayres). Moreover, if X  is a locally 
connected continuum in S 2 which does not separate S 2 , then each true cyclic element is 
a two-cell [1928c]. Also, a locally connected continuum in  S 2 fails to separate  S 2 if and 
only if each true cyclic element fails to separate. This latter fact is the first property of a 
sort that was later called cyclicly extensible and reducible.

A cactoid is a locally connected continuum each true cyclic element of which is a 2-sphere. 
A mapf of a locally connected continuum onto a Hausdorff space Y  is monotone if each 
f −1 y( ) is a continuum. The following theorem is largely due to R. L. Moore, with a 

later addition byWhyburn.

THEOREM. Every monotone image of a cactoid is a cactoid. Every cactoid is the 
monotone image of a 2-sphere.
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While on the subject, note that in 1934, Whyburn gave the proper class of maps which 
did for boundary curves what monotone maps did for cactoids [1934b]. Let X and 
Y be locally connected continua. A map f : X →Y  is said to be nonalternating if 
whenever y ∈Y then any f −1 y '( ) for y '≠ y is contained in a single component of 
X − f −1 y( ).
THEOREM. Every nonalternating image of a boundary curve is a boundary curve. 
Every boundary curve is the nonalternating image of a simple closed curve.

An excellent summary of the subject, including not only Whybum’s work but also the 
subsequent work, is the paper of B. L. McAllister, Amer. Math. Monthly 73 (1966), 
337-350. Whyburn’s book [1942], Analytic Topology, is the best source for a full 
treatment including proofs.

Regular convergence and monotone maps

For a period around 1933-1935, Whyburn became interested in homology theory and 
its possibilities for higher dimensional generalizations of structure the orems for continua 
and for maps. At least two of his contributions of this period have become of permanent 
interest. Recall that the space 2x of closed subsets of a compact metric space has a natural 
topology, that of the Hausdorff metric. Convergence of closed subsets will mean conver-
gence in this metric. The subset of 2x consisting of all continua is closed in 2x . But, for 
example, if X = S 2 then sequences of arcs converge to some very weird limits indeed. 
Whyburn defined convergence in a much more restricted fashion so that the limit would 
be much nicer.

A sequence An( ) of closed subsets of a compact metric space X is said to converge regu-
larly to the closed subset A  [1935a] if An( ) converges to A  and if given ∈>0  there 
exists δ>0  and an integer N such that if n>N  then any two points x, y of An  with 
ρ x, y( )< δ are contained in a connected subset of An of diameter <∈ . The definition 
for r-regular convergence is similar: for  n>N , any Vietoris cycle (over the integers mod 
2) of dimension! r  of diameter< δ  bounds in a subset of An of diameter <∈ . Then 
0-regular convergence = regular convergence. Moreover the sequence A,A,!,A,!  
converges r-regularly to A  if and only if A  is 1cr (that is, is locally connected in dimen-
sions r in thesense of homology over the integers mod 2).

In current language, the language can be easily put in terms of Čech cohomology over 
any coefficient group K . It is required that An( ) converge to A and that given x ∈ X  
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and a closed neighborhood U of x in X then there exist a closed neighborhood V ⊂U  
of x and an N such that forn>N ,

!H i U ,∩,An ;K( )→ !H i V ∩ An ;K( )
has trivial image for i= 0,1,!,r.

Whyburn’s interest in the concept was for such theorems as the following [1935a].

THEOREM. Let the sequence A1,A2 ,!  of 2-spheres converge i-regularly to the closed 
subset A  of a compact metric space. If i= 0, then A is a cactoid. If i=1, then A  is 
either a 2-sphere or a single point.

A number of people have considered the concept over the years.

For example, if An( ) converges r-regularly to A, then

H i An ;K( )≈H i A;K( ),      i= 0,1,!,r ,

for n large. Moreover A  is lcr. For a survey of some years ago, see Paul A. White, Bull. 
Amer. Math. Soc. 60 (1954), 431-443.

Whyburn had also begun to encounter special instances of the following phenomenon. 
Given compact metric spaces X and Y , there is the spaceY X of continuous maps of 
X into Y . There are also na tural subsets M⊂Y X (for example, all monotone maps). 
In some instances, the subset of elements of Mwhich map X onto Y is closed. More 
generally, if one puts restrictions on the fashion in which the images converge, the limit 
of a convergent sequence of elements of Mmay be in M .

He defined f : X →Y to be r-monotone if each f −1 y( )  is acyclic in dimensions ! r
(that is, has vanishing reduced Čech homology groups over the integers mod 2 in dimen-
sions ! r ). Thus 0-monotone =monotone. 

THEOREM [1935b]. Let X and W be compact metric spaces and let fn( )  be a 
sequence of r-monotone maps of X into W ; let Yn = fn X( ).  Suppose the sequence 
fn( ) converges uniformly to the map f of X ontoY ⊂W . Then Yn( )converges  

r-regularly to Y if and only if Y  is Icr and f is r-monotone.

Note the corollary. If each fn is an r-monotone map of X onto the Icr space Y and 
if fn( )  converges uniformly to f , then f is r-monotone. Let r=0. If each fn  is a 
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monotone map of X onto the locally connected compact metric space Y , and if fn( )  
converges uniformly to f , then f  is monotone.

As a corollary, if fn( )  is a sequence of homeomorphisms of S 2  onto S 2  which 
converges uniformly to f , then f  is monotone. J. W. T. Youngs later proved the 
converse: every monotone map of S 2 onto S 2 is a uniform limit of homeomorphisms.

In later years, Whyburn was considering noncompact domains and ranges, and 
considered questions for the noncompact case similar to the above. See [1957b], [1958a], 
[1962c].

Open maps. Around 1936, Whyburn began to consider the work of Stoilow. Call a map 
f : X →Y open if whenever U is open in X then f U( )  is open in Y . Call f light 

if each f −1 y( ) is totally disconnected.

THEOREM (STOILOW). Let X be an orientable 2-manifold without boundary and 
let f : X → S 2 be a map. Then f is light and open if and only if there exist a Riemann 
surface R , a homeomorphism h  of X onto R , and a nonconstant complex analytic 
map g : R→ S 2 such that f = gh .

By now Whyburn had encountered a number of instances of the following: a narrow 
class S of spaces and a wide class M of maps such that every M -image of an element 
of S  is also an element of S.

He considered now S =2-manifolds and M =light open maps and proved the following 
[1938b].

THEOREM. Let X be a 2-manifold (with or without boundary) and let f be a light 
open map of X onto a Hausdorff space Y . Then Y is a 2-manifold.

Moreover each f −1 y( )  is a discrete set. If x ∈ f −1 y( )  is not a boundary point of  X , 
there exist coordinate neighborhoods U of x  and V  of y  such that f U( )=V and

(i) f :U →V is equivalent to the map f ' z( )= z pof z :| z |<1{ } onto itself (in 
case y  is not on the boundary of Y ), or

(ii) f :U →V is equivalent to f '' f ',where f '' x+ iy( )= x+ i | y | , in case y  is 
on the boundary.
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If X is compact, then f is simplicial in appropriate subdivisions of X and Y . If Y is 
a closed orientable surface so also is X . His papers [1938a], [1938b], [1938c], [1944a], 
[1951], [1961] treat open maps on 2-manifolds and related questions.

Off and on for the rest of his life, Whyburn was to spend considerable time on open 
maps, particularly on lines of research relating their topological properties to complex 
function theory. For example, consider the classical theorem that if a sequence fn{ }  of 
complex analytic functions converges uniformly on compact sets to a limit f , then f  
is complex analytic. However on the purely topological side the sets M⊂Y X  of open 
maps, or light open maps, are not closed. For as we have seen, any monotone map of 
S 2 onto S 2 is the uniform limit of a sequence of homeomorphisms. He arrived at the 
notion “pseudo-open” as the correct limit concept [1944b], [1948], [1950], [1957a]. A 
map f of a locally connected, locally compact separable metric space X into another 
Y is pseudo-open if whenever U is an open set containing a compact component of 
some f −1 y( ) , then f U( )  contains y in its interior.

THEOREM [1957a]. Suppose fn( )  is a sequence of pseudo-open maps of X onto Y
( X and Y as above) which converges uniformly on compact sets to f : X →Y . Then 
f is pseudo-open. In particular if f is light then f is also open.

As Whyburn thought about the light open maps on 2-manifolds as the topological coun-
terparts of the complex analytic functions, it annoyed him that analytic machinery was 
needed to prove the non  constant complex analytic functions light and open. Ursell and 
Eggleston provided a proof using essentially no analytic machinery. It then seemed to 
Whyburn that one should go ahead and prove topo  logically, assuming only the existence 
of the derivative, that they had a second derivative, etc. He publicized the problem, in 
the first edition of his book, Topological Analysis [1958b] and elsewhere [1955]. Plunkett 
made considerable progress and in a few years Connell and Connell-Porcelli wiped out 
the problem completely. For a complete account, see the revised edition of his book 
[1958b] and see also [1962b]. In fact, the revised edition of his book may be used as a 
starting place for reading his work on open maps.

Compact maps and quotient maps. In considering light open maps f from one 
2-manifold onto another, even if the map is finite-to  one there is not necessarily a finite 
degree for the map. In examining such problems, Whyburn was led to the compact maps 
[1950], maps f : X →Y  such that whenever K is compact in Y then f −1 K( )  is 
compact in X . It turned out that Vainstein had already considered such maps in 1947, 
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and had proved that closed maps with compact point inverses were compact. Whyburn 
was later to prove [1964] that if Y is a k-space then compact maps are also closed.

In 1953, he proved [1953], [1966] that every map is the restriction of a compact map. 
Consider an arbitrary map f : X →Y  where X and Y are T1-spaces. Denote by 
Z = X +Y  the disjoint union of X and Y . 
Define Q ⊂ Z  to be open if

Q ∩ X and Q ∩Y  are open,

for any compact K ⊂Q ∩Y , f −1 K( )∩ X −Q( ) is compact.

One can regard X as open in Z  and Y as closed in Z . A retraction r of Z onto Y is 
defined by r = f on X , r = id on Y .  The restriction r | X is f , and r is a compact 
map.

Whyburn was interested in maps f : X →Y  with each f −1 y( ) com pact. When is 
f  a compact map? He proved [1959] that every map f  of the line into the line with 

compact point inverses is compact. How ever with X =Y = plane,  this is false but one 
has instead [1959]:

THEOREM. Every monotone map of the plane onto the plane is compact.

He raised the question of generalizations to higher dimensions [1962a]. Among a 
number of interesting responses, Vaisala proved that every n−2( )-monotone map of 
E n  onto E n is compact. In the other direction, Bing in 1969 proved the existence of 
monotone maps of E 3 onto E 3 which are not compact.

Whyburn was also interested in quotient maps (which he called quasi-compact maps). 
He observed that if f  is a quotient map of X onto Y then it was not necessarily true 
that f : f −1 A( )→ A was a quo tient map for any A⊂Y . In fact, he proved that 
f : f −1 A( )→ A  is a quotient map for all A⊂Y  (and all f ) if and only if Y is an 

accessibility space; that is, given A  in Y with limit point p there is B⊂ A∪ p  with B
closed and with p a limit point of B [1956], [1970a]. For a first place to read about such 
theorems, see his last paper [1970b].

His teaching

Some teachers are admired for their brilliant and inspiring lectures, others for their 
precise conciseness, and still others for their ability to dramatize the subject. Whyburn 
was none of these. His natural modesty precluded showiness, and he felt that under-
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standing was more an internal than an external matter. He liked to give the students 
something they could do. In this way, not only was understanding achieved, but confi-
dence and ability were strengthened as well. He did inspire his students, not in an 
instant, but more slowly and over a longer period of time. Here again continuity was a 
principle  continuity of effort-continuity of interest in the individual student. He knew 
that confidence came slowly, for he had himself wondered as he committed himself to 
mathematics, if he would be able to think of new things to do. However it was, whether 
by example and personal devotion to research, or by understanding or encouragement, 
clear that he inspired and attracted students. Many were influenced by him and most of 
his own doctoral students developed successful research careers of their own.

PhD students of G. T. Whyburn. At The Johns Hopkins Univer sity: C. H. Harry 
(1932), Barbara Aitchison (1933), C. H. Wheeler (1933), G. E. Schweigart (1934), J. 
F. Wardwell (1935). At the Uni versity of Virginia: D. W. Hall (1938), A. D. Wallace 
(1939), J. L. Kelley (1940), P. A. White (1942), C. L. Clark (1944), E. E. Floyd (1948), 
M. K. Fort (1948), R. H. Kasriel (1953), R. L. Plunkett (1953), R. F. Williams (1954), 
W. E. Malbon (1955), R. W. Jollensten (1956), P. E. McDougle (1958), Edwin Duda 
(1961), G. K. Williams (1964), R. A. Duke (1965), R. F. Dickman (1966), E. A. Stone 
(1966), C. Garcia Maynez (1968), Evelyn McMillan (1968).
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