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NORBERT WIENER

November 26, 1894—-March 18, 1964

BY IRVING EZRA SEGAL

NORBERT WIENER was one of the most original mathemati-
cians and influential scientsts of the twentieth century.
He developed a new, purely mathematical theory, an inte-
gral calculus for functions of infinitely many variables known
as functional integration. It has been of great importance
for probability and theoretical physics. Wiener made huge
strides in the harmonic analysis of functions of real and
complex variables. In a unified way, this resolved old problems,
produced new challenges, and provided a prototype for
key aspects of harmonic analysis on topological groups. In
part concurrently, he developed applications of his math-
ematical ideas in engineering, biology, and other fields. In
later life he developed a synthesis of such applications with
diverse ideas represented by central parts of the work done
in the twenties and thirties by Vannevar Bush, Walter B.
Cannon, Alan Turing, and others.

This synthesis, which he called “cybernetics,” has since
been a productive unifying philosophy in science and engi-
neering. In the United States, it primarily epitomized his
earlier contributions to communication engineering; in Britain,
it had a notable impact on neurophysiology, and its de-
layed, but eventually enthusiastic, acceptance in the Soviet
Union stimulated important mathematical developments .
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in control and ergodic theory. Before and while cybernet-
ics was being developed, Wiener was a prime mover in
multidisciplinary groups in these subjects. As much as any-
one, he showed the importance of higher mathematics for
fundamental applications, and the general scientific effec-
tiveness of the mathematical way of thinking. At the same
time, in association with his work, he elaborated philo-
sophical and social ideas that influenced world culture.

ORIGIN

Norbert’s paternal grandfather, Solomon Wiener, was a
journalist and teacher of German background who worked
in Poland. Norbert wrote of him that he sought to encour-
age the replacement of Yiddish by German among the Jews
there. Norbert’s father, Leo Wiener, was born in Bialystok,
Poland, in 1862. Leo was related through his mother, Freda
Wiener, to Leon Lichtenstein, a well-known German math-
ematician, as first cousin. Norbert later met Lichtenstein
in Europe, and it is interesting that Lichtenstein’s central
interests of applied mathematics and potential theory
came to be important ones for Norbert. Leo Wiener stud-
ied engineering in Berlin and medicine in Warsaw. At the
age of eighteen he emigrated to the United States. He had
had a plan to join in an undertaking to found a utopian
community along Tolstoyan lines in Central America,
which fell through when his partner backed out. However,
in this connection, apparently, he disembarked at New
Orleans. After a succession of employments and travels, he
became professor of modern languages at the University
of Missouri.

Norbert’s maternal grandfather, Henry Kahn, had a de-
partment store in Missouri, to which he had emigrated
from Germany. Kahn’s wife came from a family named
Ellinger, which had been settled in the United States for
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some time. Their daughter, Bertha Kahn, married Leo Wiener
in 1893. Their first child, Norbert, was born a year later
on November 26, 1894, in Columbia, Missouri. The name
Norbert was taken from a work of Robert Browning, the
couple being thought to have met at a Browning club.
Within the following year, Leo Wiener lost his position,
apparently as a result of university politics. He decided to
move to the Boston area in search of employment, and
found an apartment in Cambridge. After a variety of posi-
tions, he obtained a part-time instructorship in Slavic lan-
guages at Harvard University. In conjunction with ancillary
positions at Boston University and the New England Con-
servatory, among others, this provided a livelihood during
the earlier years in Cambridge. Eventually he became a
tenured professor of Slavic languages at Harvard Univer-
sity, a position he held until his retirement.

In the first volume of his unusually intimate autobiogra-
phy, Norbert gave a portrait of his parents, and especially
of his father. He was highly adulatory, but at the same time
displayed some intellectual but principally emotional res-
ervations He indicated that his father had placed some-
what excessive pressure on him and had not given him
sufficient credit for his intrinsic merits. Instead, he felt, his
father attributed his son's precocity and brilliance to his
upbringing in accordance with the educational and social.
ideas he had espoused.

By other accounts, Leo Wiener was exceptionally origi-
nal, imaginative, and productive intellectually. At the same
time, he was a fine teacher and socially very broadly in-
volved. His primary profession was that of a linguist and
philologist, and he attained very high distinction in these
fields. However, he developed original ideas in quite dif-
ferent areas, for example geology, but his theories had
few followers in his day.
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There is no question that Leo Wiener was quite con-
cerned about the intellectual development of Norbert and
his other children. Early on, he taught Norbert mathemat-
ics, languages, and other subjects. He put Norbert in touch
with many outstanding intellects that later influenced him.
A typical example of this was his taking Norbert to visit the
laboratory of his friend, Walter B. Cannon. Cannon’s con-
cept of homeostasis was later to form one of the crucial
pillars of Wiener’s Cybernetics.

In 1898 the family had a second child, Constance. She
later married Professor Philip Franklin, a mathematician
at the Massachusetts Institute of Technology. A boy was
born in 1900, but died in infancy. In 1901, the family vis-
ited Europe, following which Norbert entered third grade
in a public school in Cambridge. However, after quickly
advancing to the fourth grade, he was removed from the
school by his father until he entered high school, two years
later. Meanwhile, his second sister, Bertha, was born in
1902. She later married Professor Carroll W. Dodge, a botan-
ist at Washington University in St. Louis, Missouri. Besides
these two girls, the family eventually included four boys, of
whom two died in infancy.

EDUCATION

In 1906, Norbert graduated from high school in Ayer,
Massachusetts, and entered Tufts College to study biology
and mathematics. His brother Frederick was born in the
same year. In 1909, Norbert was graduated from Tufts Col-
lege with a cum laude A.B. degree. He then entered Harvard
Graduate School with the intention of studying zoology.
However, the emphasis on laboratory work in this subject
turned out to be inappropriate for him, and a year later he
transferred to Cornell University, where he had been given
a scholarship in the Sage School of Philosophy. He stud-
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ied there with Frank Thilly, a friend of his father’s from
the Missouri days who had facilitated Norbert’s transfer to
Cornell, and Walter A. Hammond and Ernest Albee. But
the work there again did not proceed really well, and a
year later Norbert transferred back to the Harvard Gradu-
ate School.

However, he stayed with the subject of philosophy. He
studied with Edward V. Huntington, G. H. Palmer, Josiah
Royce, and George Santayana, some of the well-known philoso-
phers of the time. He received an M.A. degree in 1912,
but because of Royce’s diminishing health, worked for his
doctorate with Karl Schmidt of Tufts, who as a young pro-
fessor was interested in mathematical logic. In 1913, Norbert
was graduated from Harvard with a Ph.D. in philosophy.

In the meantime, the last child to be born to the family
(in 1911) died in infancy. Norbert was living at home while
at graduate school, and had responsibility for the care of
his brother Frederick. Family pressures were strong and
burdensome for Norbert. He was quite pleased when the
traveling fellowship for which he had applied was awarded
to him by Harvard. He contemplated going to Cambridge,
England, to work with Russell, and to Turin to work with
Peano. Hearing of Peano’s decline in scientific activity and
considering Russell to be quite active, he decided to go to.
Cambridge to pursue studies in mathematical logic.

POSTDOCTORAL YEARS:

Norbert was not quite as satisfied with Russell’s lectures
and their meetings as he had expected. At the same time
he found that despite his limited background in mathematics,
he was able to pick up quickly on the mathematics lectures
with which he supplemented his philosophical studies. This
was particularly true of the lectures of G. H. Hardy, which
Norbert found absorbing. Hardy was probably the leading
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English mathematician of his day. Hardy showed less of
the reserve that Wiener was sensitive to in some of his
other teachers and fellow students, The support and en-
couragement given by Hardy to the ambitious but uncer-
tain young man seeking a challenging direction in which
he could display his intellectual prowess was probably an
important factor in Norbert’s becoming a mathematician.
Hardy’s lectures and writings were virtual works of art as
much as of science, displaying personal enthusiasm, rich-
ness of content, and unsurpassed lucidity. He showed a
sincere and effective interest in talented young mathemati-
cians, and he was not put off by eccentricity—most notably
in the case of the Indian mathematician, Ramanujan, but
also that of Wiener. In effect, he converted Norbert from a
relatively diffuse interest in issues of broader relevance to
one of concern for mathematical penetration and perfec-
tion. Hardy became somewhat in loco parentis to Norbert,
and played this role intermittently for two decades after-
ward. However, Hardy seems never to have understood
the side of Wiener that was deeply attracted to the broad
issues of science and to possible applications; he even
raised the question of whether Wiener’s apparent concern
about the latter was not a pose. From Hardy’s position,
somewhat that of a gentlemanly, latter-day scientific aes-
thete, such a pose would have been acceptable, while a
true interest in applications would have been quite irrel-
evant. But however much Wiener’s professional career de-
pended on his prowess in pure mathematics, his later
work was to display quite convincingly and effectively a
profound concern for issues of external relevance. With
Hardy’s support, Wiener was to become better known for his
work on Tauberian theorems than for his earlier and prob-
ably more innovative work on Brownian motion, which was
outside the mainstream of mathematics during the twenties.
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During the second semester of Norbert’s fellowship year,
Russell was away. As a consequence, he went to Gottingen
for an extended visit. There Wiener attended the lectures
of David Hilbert and Edmund Landau in mathematics, and
those of Edmund Hiusserl in philosophy, before returning
to Cambridge. The outbreak of World War I led to his
return to the United States, where he completed a second
traveling fellowship he had been awarded at Columbia Uni-
versity. He studied there with John Dewey, among others.

Following this, Norbert received a junior position at Harvard
University. During 1915-16 he lectured there on the logic
of geometry. During 1916 he served with Harvard’s re-
serve regiment at the Officer’s Training Camp in Plattsburg,
New York. In 1917 he served with the Cambridge R.O.T.C.
During these years he also worked variously as an instruc-
tor in mathematics at the University of Maine in Orono
(1916-17); as an apprentice engineer in the Turbine De-
partment of the General Electric Corporation in Lynn, Mas-
sachusetts (1917); and as a staff writer for the Encyclopedia
Americana in Albany, New York (1917-18).

Both Norbert and his father were strongly and publicly
for the Allied cause, despite their ties to German culture.
Norbert expressed opposition to “Prussian militarism.” He
wrote frequently to individual members of his family, and
in January 1918 wrote to his father as follows (in part):

I think the time has come for me to make a last try to get into military
service, and I am writing to ask you for permission. . . . It is not thatI am
dissatisfied with my work nor that I have any particular love for a military
career, but I hate to think of myself as less of a man than those of my
friends who are in the army, and I do not care after this war to look back
on myself as a slacker. I cannot be anything but ashamed of myself when I
advocate a war that I do not share in.

In 1918, Norbert accepted an invitation from Oswald
Veblen, who was then an officer in the Army in charge of
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the computation of ballistic tables, to join him in this work
at the Aberdeen Proving Ground, Maryland, as a civilian
employee. Veblen’s letter noted, in apparent response to
Norbert’s expressed inclinations, that should he prefer to
do the work in a military capacity, such an arrangement
might later prove possible. Indeed, Norbert enlisted in the
Army as a private some months before the war ended, and
continued in the same work. Two months after the war
ended, Norbert felt that he was no longer needed. He
sought his discharge, and this came through in February
1919. ‘

Veblen, who was already a leading mathematician, re-
turned to Princeton University, bringing with him various
younger mathematicians who had displayed talent. Norbert
would have liked to go with him but did not receive the
call. Instead, he was recommended for a position in the
Department of Mathematics at the Massachusetts Institute
of Technology by Professor W. F. Osgood of Harvard Uni-
versity. Although the Institute had world renown as a
school of engineering in 1919, it was then far from being a
leading center of mathematical research. Norbert did not
regard the recommendation as evidence of attainment of
much standing as a mathematician, but he accepted the
position that was offered. He remained at the Institute up
to the time of his death, and his scientific interaction with
it was to prove a great mutual benefit.

CENTRAL DECADE I: 1919-29

Wiener’s early mathematical papers concerned mathemati-
cal logic and its relations to space, time, and measure-
ment. In their physical and empirical concerns they fore-
shadow some of his mature interests. They display notable
seminality and independence, and are quite interesting from
a historical perspective. Their publication, in considerable
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number in the Proceedings of the Cambridge Philosophical Soci-
ety, was facilitated by Hardy, whose lectures Wiener was
attending at the time of his first publication (in mathemat-
ics) in 1913.

Whether despite or in part because of the turbulence of
the war years, the seed of Wiener’s scientific innovation
began to sprout vigorously soon after. His first major math-
ematical salient, in what is now called functional integra-
tion, began around 1919. In August 1920, in one of his
many intimate letters to his sister Constance, he wrote from
Paris as follows:

I have not been able so far to get in touch with Frechet. I have wired him
that I am here and awaiting an answer. I find that I am making a little
headway with my problem—integration in function space—and in a way
that may have practical application. I define the measure of an interval in
it in a way that hitches up with probability theory as it is applied in statisti-
cal mechanics, and I have been living in hopes that the Lebesgue integral
which I can get from it will be good for something. At any rate, when I
meet Frechet, I shall have a peach of a problem to work on.

This was the beginning of his work on a mathematical
theory of Brownian motion, essentially the theory of “Wiener
space,” as others have called it, and the prime example for
the modern theory of functions of functions, or for func-
tions of infinitely many variables. The physical theory of
Brownian motion had earlier been studied by Einstein and
Smoluchowski and was proposed to Wiener as a topic for
investigation by Russell; coincidentally and again seren-
dipitously, the problem of integration in function space
had been proposed to Wiener by I. A. Barnett, a former
student of E. H. Moore, one of the founders of modern
American mathematics, who had initiated research on this
problem. These earlier approaches were different from
Wiener’s and had no special relation to Brownian motion,
which Russell had earlier suggested as a topic for investiga-



398 BIOGRAPHICAL MEMOIRS

tion. Wiener was quick to see that the conjunction of the
integration in function space idea with the normal prob-
ability law established in the physical theory of Brownian
motion led to an extremely incisive and interesting math-
ematical development, which at the same time dovetailed
beautifully with the qualitative aspects of the physical theory
noted by Perrin.

During the early 1920s, Wiener sank his roots deeper
into functional integration, while at the same time making
significant contributions in a variety of other parts of analysis.
The novelty of his Brownian motion theory was such that
it was not at all widely appreciated at the time, and the few
who did, such as H. Cramer in Sweden and P. Levy in
France, were outside the United States. He became some-
what better known for his work in potential theory. This
was a traditional field, unlike functional integration, and
although his work connected most closely with work of
Lebesgue, Perron, and others in Europe, it seems to have
been precipitated by his attendance at the lectures of O.
D. Kellogg at Harvard, which both informed Wiener and
aroused his interest. In a remarkably short period of time,
of the order of two years, Wiener made a series of brilliant
contributions that fundamentally altered the subject, which
was never the same thereafter. He developed a fruitful
concept of generalized solution to the Dirichlet problem
(that of the solution of the Laplace equation attaining pre-
scribed values on the boundary of the region in question).
He was led thereby to a general notion of capacity that has
been essential for modern potential theory. In a beautiful
epilogue to this work, he gave a precise geometrical crite-
rion for the regularity of a boundary point relative to the
Dirichlet problem.

The theory of almost periodic functions burst on the
scene in the twenties with the work of H. Bohr in Copenhagen;
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it seemed potentially a promising approach to the intrac-
table Riemann hypothesis and interested Wiener for its
relation to the study of vibrations. He was awarded a
Guggenheim Fellowship in 1926-27 to work on the subject
and arranged through Max Born, who had worked with
Wiener on quantum mechanics during a visit to MIT, to
spend one semester in Gottingen, and arranged with Bohr
to spend the other in Copenhagen.

The eight years beginning in 1926 were to be the most
eventful in Wiener’s personal as well as scientific life. In
1926 he married Margaret Engemann, a graduate of Utah
State College and Radcliffe, who had earlier emigrated with
her family from Germany. Their first daughter, Barbara,
was born in 1928, and the second, Margaret, in 1929. Al-
though he encountered some unpleasantness in Gottingen
arising from the family’s espousal of the Allied cause dur-
ing World War I, the visit was scientifically extremely stimu-
lating. In particular, he gave a course on trigonometric
series in this major center and was exposed to ideas of R.
Schmidt, which influenced him toward his group-theoretic
treatment of Tauberian theory, one of his major scientific
achievements. Schmidt’s approach complemented that of
Hardy and Littlewood on Tauberian theorems, the two to-
gether providing the groundwork for Wiener’s brilliant
synthesis, “Tauberian Theorems,” a 100-page article which
appeared in 1932. An even longer memoir, “Generalized
Harmonic Analysis,” which appeared in 1930, reflected in
part his work with Bohr, provided an alternative approach
to his Brownian motion theory, and connected this with
the spectral analysis of functions on the line.

CENTRAL DECADE II: 1930-40

The Wiener family visited Cambridge University during
1931-32, and at Hardy’s invitation, Wiener lectured on har-
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monic analysis. Although the Fourier transform was a clas-
sic subject, Wiener’s approach in his later book reflecting
these lectures, The Fourier Integral and Certain of Its Applica-
tions, was a distinctive and seminal one. In it one can see
the seed of important relations between harmonic analysis
in euclidean space, a theory invariant under rigid displace-
ments in this space, and analysis in function space, which
relates to Hermite functions much as euclidean harmonic
analysis relates to complex exponentials and is ultimately
seen to be invariant under the group of unitary operators on
a Hilbert space. The connection was to lead to “The Homoge-
neous Chaos,” one of Wiener’s most seminal papers, which
facilitated harmonic analysis in Wiener space and related to
the mathematical theory of Bose-Einstein quantum fields. A
decade later, it led to the work of his disciples R. H. Cameron
and W. T. Martin on analysis in Wiener space.

During the years 1932-33, Wiener was fortunate in hav-
ing the collaboration of a brilliant young English math-
ematician, R. E. A. C. Paley. Following Paley’s accidental
death, Wiener combined their researches in an important
and influential book, Fourier Transforms in the Complex Do-
main, published in 1934. This concerned several aspects of
harmonic and stochastic analysis, especially Laplace as con-
trasted with Fourier integrals, an extension paralleling his
earlier extension of Schmidt’s work in Tauberian theory
using complex methods. Comparing his own relation to
Paley as somewhat similar to that of G. H. Hardy to his
collaborator, J. E. Littlewood, Wiener wrote:

My role was primarily that of suggesting problems and the broad lines on
which they might be attacked, and it was generally left to Paley to draw the
strings tight.

In his obituary of Hardy he wrote:
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I think it is fair to say that throughout their long collaboration the ex-
tremes of technical facility belong to Littlewood, but that much of the
nexus of leading ideas and the philosophical unity is that of Hardy.

In general, Wiener’s interest and thrust was to be primarily
ideational and only secondarily technical, and enhanced
precision and clarity was brought to his articles by the sug-
gestions of a variety of mathematicians who became inter-
ested in his ideas.

Wiener’s collaboration in the early thirties with E. Hopf,
who came to MIT at Wiener’s invitation, produced signifi-
cant work for applied as well as pure mathematics, on an
integral equation that bears their names. The topic could
also be construed as one in complex harmonic analysis,
and is exposed in Wiener and Paley’s book, Fourier Trans-
Jorms in the Complex Domain (1934,3). The extension of real har-
monic analysis to the complex domain was one of Wiener’s
major secondary themes. His study of the work of Heaviside
and background in communication theory made this most
natural. The applications of harmonic analysis to commu-
nication theory largely concern networks and similar mecha-
nisms. As physical objects, these have causality features not
logically essential for real harmonic analysis, but which translate
into complex analyticity features on Fourier transforma-
tion. The book with Paley was in significant part a rigorous
and coherent treatment of the basic mathematical phe-
nomena behind this connection. It had considerable pure
as well as applied influence, being developed further in
works of S. Bochner, E. Hille, and J. D. Tamarkin, among
others. On the applied side, the method of factorization in
the complex plane used in the treatment of the Wiener—
Hopf equation has been useful for a variety of problems,
including diffraction and prediction theory.

Wiener’s influence was propagated by a number of stu-
dents and disciples. S. Ikehara, a doctoral student from
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Japan in the early thirties, developed a variant of the Wiener
Tauberian theorem that was adapted to the treatment of
the Riemann zeta function and led to one of the simplest
proofs of the prime number theorem, to the effect that the
number of primes less than n is asymptotic to n/log n. An
outstanding doctoral student was Norman Levinson, who
worked initially in harmonic analysis in extension of the
line developed by Paley and Wiener and later made signifi-
cant contributions to the theory of ordinary differential
~ equations. R. H. Cameron and W. T. Martin were already
at the postdoctoral level when they began working with
Wiener in the late thirties on complex and Fourier analy-
sis. The English mathematician H. R. Pitt came to Cam-
bridge and worked with Wiener on analytic functions of
absolutely convergent Laplace-Stieltjes transforms, in ex-
tension of the core of Wiener’s Tauberian theory. Wiener
also worked with R. H. Cameron on the same subject. In
part this involved continuous singular measures, on which
Wiener worked with Aurel Wintner, a mature German math-
ematician who had emigrated to the United States. Wintner
shared Wiener’s interest in probability, and they worked
together intermittently for two decades on issues in har-
monic analysis and ergodic theory.

The later thirties also saw the beginning of Wiener’s es-
pousal of what he later termed “cybernetics, or control
and communication in the animal and the machine.” The
meaning and role of such concepts as memory and learn-
ing in machines—a precursor to the field of artificial intel-
ligence—was explored by Wiener in association with stu-
dents and colleagues. The cofounder of modern information
theory, Claude Shannon, took his doctorate at MIT during
this period, as did Wiener’s student Brockway McMillan,
who contributed to Shannon’s later theory. While Wiener’s
ideas concerned information in the broadest context,
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Shannon’s work treats specifically the production and com-
munication of information in a machine context. The work
of the Shannon school has provided probably the major
concrete exemplification and indication of practical rel-
evance for Wiener’s ideas. It also influenced ergodic theory,
which was applied by McMillan, and led in particular to
the introduction by Kolmogorov of the concept of the en-
tropy of a flow, which has played an important role in
ergodic theory ever since.

The respective ergodic theorems of G. D. Birkhoff and ].
von Neumann in the early thirties established ergodic theory
as a mathematical subject. Both Wiener and his colleague
Eberhard Hopf at MIT were vitally interested in the physi-
cally fundamental applications of higher mathematics and
became involved in the new subject. In the late thirties
Wiener made significant contributions to it, including his
Dominated Ergodic Theorem. This strengthened the theorems
of Birkhoff and von Neumann, and illuminated the types
of convergence involved in ergodic theory.

Probably Wiener’s most important mathematical work
of later years, and the only one comparable in depth and
originality to his earlier work on Brownian motion, on real
harmonic analysis, and on potential theory, was on what
he termed “the Homogeneous Chaos.” This work in the
late thirties related ergodic theory to Wiener space Wand
to harmonic analysis. The Hilbert space L,(W) (i.e., the
space of all square-integrable functionals defined on Wiener
space) was shown to be the direct sum of a sequence of
orthogonal subspaces K (n=0, 1, 2, . . .), each of which
was invariant under the induced unitary action on Ly(W)
of the measure-preserving transformations I'(T), arising in
a natural way (first observed by B. O. Koopman) from an
arbitrary orthogonal transformation 7T on L, {0,1]. Even non-
linear transformations could be represented by measure-
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preserving transformations on W, as Wiener emphasized in
later applications, although the latter did not in general
leave invariant the K . This work exhibits in nascent form
a major aspect of the equivalence of the particle and wave
representations of a quantized Bose-Einstein field—the K,
are what are known as the n-particle subspaces in this con-
nection—as mathematically formulated in the fifties but
ideationally going back to the beginnings of quantum field
theory in the highly heuristic form given by Dirac, accord-
ing to which “a Bose-Einstein field is equivalent to an as-
sembly of harmonic oscillators.” It was characteristic of Wiener’s
extraordinary scientific intuition that he was able to con-
struct a basic part of quantum field theory on the basis of
pure thought, starting from his theory of functional inte-
gration. However, in this work, as well as in later, related
work with A. Siegel in the direction of quantum theory,
the relation to physics is argued quasi-philosophically rather
than objectified analytically; in particular, the quantized
field itself is not modeled. Indeed, Wiener seems gener-
ally to have eschewed noncommutative operator theory—a
major scientific difference between him and the man who
is otherwise most similar scientifically, John von Neumann.
Relatedly, whereas von Neumann systematically deployed
abstract algebraic methods in the direction of modern analysis
and its applications, Wiener left undeveloped some of his
own insights in the algebraic direction and preferred a
classical and concrete approach that had a measure of con-
tinuity with the ethos of the Hardy-Littlewood school.

During the academic year 1935-36, Wiener was visiting
professor at Tsing Hua University in Peiping (now Beijing),
China. He spoke Chinese and many other languages with
unusual fluency, even after modest exposure to them. He
published several papers in China on analysis of the Hardy-
Littlewood type.
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PRIORITY TO APPLICATIONS (1940-64)

Wiener had always been inclined toward applications of
mathematics in science and engineering, but before World
War II his central contributions had been of an essentially
general mathematical nature. The war focused his interests
into concrete directions, and from that time onward his con-
tributions were primarily in the direction of applications.

The first of these was to prediction theory, which was
involved in anti-aircraft fire control. This was a natural and
fairly straightforward application of the theory of stochas-
tic processes, which J. L. Doob and others in the United
States had developed on a rigorous basis, following
Kolmogorov’s mathematical formulation of the foundations
of probability theory in 1933. Unsurprisingly, in view of
the exigencies of the war, Kolmogorov himself had begun
to publish on prediction theory, but his work was unknown
to Wiener until I chanced to mention it to him at a meet-
ing. However, after incisive early work, Kolmogorov left
the subject, while Wiener developed it rather fully, includ-
ing its engineering aspects, during and after the war. His
mathematical theory, which modeled deviations from the
signal, or “noise,” as a stationary multivariate Gaussian sto-
chastic process, was developed jointly with the younger math-
ematicians E. J. Akutowicz and, especially, P. Masani. The
engineering implementation was developed in collabora-
tion with Julian Bigelow. The basic theory was given in a
report published during the war; this was effectively a draft
of his monograph, “Extrapolation, Interpolation, and Smooth-
ing on Stationary Time Series,” published in 1950.

This work represents a special case of the study of mecha-
nisms as devices that effect an input-output transfer, with
regard to smoothing, feedback, and stability, independently
of internal dynamics. In part, cybernetics emerges natu-
rally from this study, for which the prediction theory was
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an important prototype. In principle, as Wiener stressed,
similar considerations apply to the biological and social
sciences as well as to the engineering and physical sci-
ences. However, the former systems are relatively complex
and lacking in symmetries, so that a general theory cannot
be expected to apply to them with the same specificity as
in the case of the temporally or spatially invariant models
used in electrical engineering and physics. The latter were
the systems to which Wiener’s mathematical investigations
before the war related. Correspondingly, it was the breadth
and coherence of the cybernetic philosophy, and its use-
fulness as a guide to innovative development and experi-
ment, that were its main contributions, rather than any
difficult or incisive technical accomplishment. However,
its permeation of scientific thought has been so extensive
that its novel and stimulating character before and during
the war cannot now be readily appreciated.

The origin of Wiener’s almost uniquely comprehensive
scientific identity can be traced along the following lines.
He started out in biology, but felt himself to be too clumsy
in experimentation and turned to philosophy. He took his
doctorate in this subject, and undertook postdoctoral work
directed toward logic. He seems to have turned to math-
ematics largely because he found he could do it relatively
easily and well, and thereby make his mark in the intellec-
tual world more readily than in other subjects. But impor-
tant factors in his becoming a mathematician were Hardy’s
leadership and, probably, Russell’s declining interest in
mathematical logic.

By the middle and late thirties, Wiener had attained
pure mathematical eminence, indeed a virtual world pre-
eminence in a major part of mathematical analysis. But his
concern with applications had not lapsed and indeed had
been nurtured during his years at MIT by interaction with
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the Electrical Engineering Department and through it with
Bell Telephone Laboratories. The Bush Differential Ana-
lyzer, for example, engaged his attention and was an early
prototype of the kind of development that would concern
him in the forties and thereafter. His work on Fourier
analysis, and especially that in the complex domain, pro-
vided a general mathematical theory that was clearly most
relevant to theoretical network and filter design issues. The
work of physiologist Walter B. Cannon, whose contribu-
tions revealed and concretely exemplified the importance
of feedback and control in the biological context, and Wiener’s
joint work with Cannon’s associate, Arturo Rosenblueth,
would naturally have turned Wiener’s thoughts toward a
unified approach to these matters—and the related ones
of memory and learning—in all types of time series, whether
generated by physical or biological processes.

Indeed; the time was ripe for such a synthesis. Claude
Shannon, who had gone from MIT to Bell Laboratories,
had developed the information theory in the context of
coding theory and cryptography. This important work pro-
vided a compelling illustration of cybernetic philosophy
and, together with Wiener’s work, served to establish infor-
mation theory as a field in its own right. About a decade
earlier, Alan Turing had developed an illuminating approach
to constructive mathematical logic based on a computing
machine tape analogy. Still earlier, some of the ground-
work for a mathematical theory of information had been
laid with the work of L. Szilard in statistical physics, that of
R. A. Fisher on statistical estimation, and, in the context of
electrical communication theory, work of Nyquist, Kupfmuller,
and especially Hartley. Behavioristic psychology, developed
by John B. Watson around the same time, provided a bio-
logical example of cybernetics, in addition to the theory of
homeostasis already mentioned. ‘
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CYBERNETICS

Even before World War II, Wiener had begun to think
in these directions, while at the same time developing his
earlier mathematical work in Fourier analysis and Brown-
ian motion. This work led to important mathematical pa-
pers, but when the war came he was quick to turn to appli-
cations along cybernetic lines, such as prediction theory
and fire control. He never again returned to mathematical
work at the intense and profoundly innovative level of his
prewar contributions.

In the postwar period Wiener was especially interested
in working along multidisciplinary lines encompassing all
of physiology, psychology, communication engineering, and
the like. He sponsored a seminar that included a number
of the most active similarly minded scientists and engineers
in the Boston area and covered a broad spectrum of ques-
tions, from theory to hardware. In particular, his postwar
collaboration with the Mexican physiologist Arturo Rosen-
blueth led to a series of important papers in biology and
medicine. In engineering this approach was exemplified
in collaborations with Julian Bigelow and Y. W. Lee involv-
ing engineering development of ideas growing out of Wiener’s
mathematical theory.

Among others who on occasion attended the Wiener seminar
were W. S. McCulloch, Walter Rosenblith, and Jerome Wiesner,
as well as the brilliant but short-lived Walter Pitts. Wiener’s
Cybernetics, published in 1948, was in essence both a report
on these multifaceted activities and a program. It made a
synthesis of ideas and applications that had been set forth
in a more limited and technical way in the previous de-
cade. It proved highly stimulating in areas where these
ideas had not yet penetrated and remains especially influ-
ential in fields involving the conjunction of biology and
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psychology with engineering and mathematical modeling.
By 1948, however, related ideas had been advanced, in part
quite independently, by a number of scientists in diverse
fields, from Walter B. Cannon in physiology to Dennis Gabor
in optical engineering.

Wiener’s later works largely consolidate, amplify, and

popularize his earlier relatively theoretical work. Probably
~ the most important was his book Nonlinear Problems in Ran-
dom Theory, which made the ideas of his theory of Brown-
ian motion and the homogeneous chaos accessible to engi-
neers concerned with time series. He continued his earlier
mathematical collaborations with E. J. Akutowicz, P. Masani,
and Aurel Wintner at somewhat reduced levels.

His last works increasingly emphasized the biological and
social applications of cybernetics. Homeostasis, sensory pros-
thesis, and the mechanism of the brain were among his favor-
ite themes. So also was moral philosophy. His final collapse
took place, fittingly enough, in a speech laboratory, repre-
senting a conjunction of several of his scientific interests. He
was then in the midst of a lecture tour in Scandinavia, ac-
companied by his wife—whose steady and understanding
support had been of incalculable benefit to him.

In perspective, cybernetics as a field in its own right has
receded as its ideas were gradually absorbed in more specific
forms in particular fields. It remains a universal metaphor
indicative of parallels and relations between a very broad
range of scientific and engineering theory and applications.
As a crystallization of positivistic attitudes and initiatives con-
cerning temporally evolving systems, it represents a signifi-
cant contribution to philosophy, Wiener’s first love.

BROWNIAN MOTION IN PERSPECTIVE

Wiener’s most original and influential work was his theory
of Brownian motion, one of the most striking mathemati-
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cal developments of the twentieth century, whose implica-
tions are still being actively investigated. The idea of instal-
ling a countably additive measure in function space brought
together central currents in mathematical analysis at the
same time that it provided a definitive model for an impor-
tant physical phenomenon. In more recent years, func-
tional integration has played a major part in quantum field
theory—although in a quite heuristic form in the physical
literature—as in the path integral formalism originated by
Feynman. In any event, Wiener’s work in the early twenties
appears, with some hindsight, to foreshadow somewhat the
important and influential formulation in rigorous math-
ematical terms of the theory of probability by Kolmogorov
in 1933. This correspondingly appears in considerable
part as a synthesis of Wiener’s prototypical initiative with
the abstract integration theory developed during the twen-
ties. Moreover, Wiener space remains the key example for
the theory of stochastic processes and its many applica-
tions, although the current approaches to the subject are
much simpler and more powerful than the original ones.
In its original and perhaps simplest form, Wiener space
consists of the space (j[0,1] of all real continuous func-
tions on the interval {0,1] that vanish at 0. The variable
continuous function (or path) in this space, which will be
denoted Wfor brevity, is usually denoted as x(¢) in connec-
tion with Wiener’s theory. To begin with, Wiener measure
is defined on all subsets of W that are obtainable by re-
stricting the values x(¢,), x(%), . . ., x(¢,) at a finite number
of arbitrarily given times to lie in a given region in n-
dimensional space. It is uniquely determined by the as-
sumptions, which were implicit in heuristic physical theory,
that (1) the joint distribution of x(z,), x(4 ),...x(¢,) is
normal (it is assumed the measure of all Wis 1, so that the
language of probability theory is applicable); and (2) if
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- s < t< u, then x(u) — x(¢) has vanishing mean and variance
u — t and is stochastically independent of x(s). What was
new here was the idea of treating the entire trajectory as a
point of a measure space, and, to a lesser extent, the dem-
onstration, which was essential for the applicability of the
Daniell integral, that the measure was countably additive.
General theory then permitted the unique extension of
the measure to a much wider class of subsets of Wso as to .
remain countably additive, and validated all major features
of Lebesgue integration theory. In particular, it became
meaningful to ask the probability that a function selected
at random from W was in a specified function class, e.g.,
continuous or differentiable.

Wiener’s proof that the probability that a Brownian mo-
tion trajectory modeled in terms of W would be differen-
tiable was 0 could not have dovetailed more closely with
the qualitatively observed character of Brownian motion.
To quote from Wiener:

The Brownian motion was nothing new as an object of study by physi-
cists. There were fundamental papers by Einstein and Smoluchowski that
covered it, but whereas these papers concerned what was happening to
any given particle at a specific time, or the long-time statistics of many
particles, they did not concern themselves with the mathematical proper-
ties of the curve followed by a single particle.

Here the literature was very scant, but it did include a telling comment
by the French physicist Perrin in his book Les Atomes, where he said in
effect that the very irregular curves followed by particles in the Brownian
motion led one to think of the supposed continuous non-differentiable
curves of the mathematicians. He called the motion continuous because
the particles never jump over a gap, and non-differentiable because at no
time do they seem to have a well-defined direction of movement.

It is interesting that when first established, such phenom-
ena as continuous, nondifferentiable functions were regarded
by Poincaré and some other physically oriented mathema-
ticians as irrelevant pathology of negligible import.
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The theory may appear at first glance to be somewhat

special, being, e.g., nonrelativistic and involving only the
elementary differential operator d/dt. However, it can be
adapted so as to be invariant with respect to any given
group, which may be operative on an n-dimensional mani-
fold, and in further modified form, with d/dt replaced by
an arbitrary quasi-elliptic differential operator. In some
ways the theory is most cogently and invariantly formu-
lated as the theory of a Gaussian probability in Hilbert
space, the connection with Wiener’s formulation deriving
from the use of his stochastic integral.
- More specifically, the nondifferentiability of x(¢) with prob-
ability 1 meant that formal expressions such as ff(t)dx(t),
where f(t) is a given smooth function on the interval [0,1],
had no a priori meaning in terms of conventional defini-
tions of the integral. This led to Wiener’s introduction of
the simplest prototype of the “stochastic integral,” which
defined | J(t)dx(t) as a random variable, or measurable func-
tion, on W. Such integrals arise in generalized form in the
modern theory of stochastic differential equations, which
has been principally developed by K. Ito. In intuitive terms,
the Wiener process x(?) is the solution of the “stochastic”
differential equation dx/dt = white noise; this serves indi-
rectly to give precise mathematical meaning to the latter
concept, which intuitively represents the resultant of
uncorrelated random Gaussian effects in time or space.

Two decades would pass before Wiener’s disciples R. H.
Cameron and W. T. Martin would report that Wiener measure
had strange absolute continuity or differentiability proper-
ties. They presented an analog to the theorem of Plancherel,
applicable to the space L,(W) of all square-integrable func-
tions on Wiener space, but it too had a strange appearance.

The puzzling features of analysis in W were to be clari-
fied a decade later by work originating in the mathemati-
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cal theory of quantum fields. In purely mathematical
terms, this showed that in essence analysis in Wcould more
invariantly and effectively be regarded as a disguised ver-
sion of analysis in Hilbert space H, which in the case of a
finite-dimensional Hilbert space was equivalent to conven-
tional harmonic analysis of square-integrable functions in
euclidean space. The invariant Gaussian measure g on a
real euclidean space H is not countably additive when H
is infinite dimensional, i.e., 2 Hilbert space. Nevertheless,
it makes correspondence to any polynomial p(x) defined
on H (i.e., the usual type of polynomial applied to a finite
number of coordinates in H) a linear functional E(p) =
J f(x)dg(x) defined by reduction to integration over these
coordinates. This functional is positive on positive polyno-
mials and has restricted growth properties. Algebraic theory
of the Stone-Gelfand type then shows that there exists a
Daniell-Lebesgue-type countably additive probability space
Q and an integral-preserving algebraic isomorphism be-
tween the algebra P of all polynomials on H and an alge-
bra of random variables that is dense in L,(£2). This legiti-
mizes the application of abstract Lebesgue integration
theory, and in particular the Lebesgue spaces L (H g) are
well defined, by a process of completion of P. The connec-
tion with analysis in Wis now that L,(W) is equivalent to
L2(H,g), with H taken as LQ[O,l], via a transformation that
is uniquely determined by the property that it carries the
Wiener stochastic integral J f(Ydx(t) into the linear func-
tional p(h) = <h,f> = | fi) h(t)dt.

The absolute continuity results of Cameron and Martin
are subsumed in simple and invariant form by the result
that the transformation on H, y = Tx + a, where T is a
continuous invertible linear transformation on H and a is
a given vector, is absolutely continuous (i.e., has a bona
fide Jacobian) if and only if T*T — I is a Hilbert-Schmidt
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operator. The apparently strange form of the Fourier transform
F in W becomes intelligible on computation of the effect
on F of a transition from Lebesgue to Gaussian measure in
euclidean n-space (by the unitary transformation consist-
ing of multiplication by the square root of the ratio of the
Lebesgue and Gaussian measure densities), followed by let-
ting n — oo, and then making the transition from Gaussian
measure in H to Wiener measure in G;[0,1].

These results, which I developed in the fifties, and which
have been extended by L. Gross, show that in essence L,
analysis in Wiener space can be regarded as the infinite-
dimensional form of conventional L, harmonic analysis.
Gaussian measure is invariant under the orthogonal group
O(H) on H. This implies that for any orthogonal trans-
formation T on H, there is a corresponding measure-
preserving transformation I (7) on the measure space cor-
responding to (H,g), a correspondence emphasized by Wiener
in special cases in the form of an action on W. For ex-
ample, if Brownian motion is considered on the entire real
line instead of the interval [0,1], as is no essential change,
then W becomes invariant under the action of the transla-
tions: x(t) — x(t+ s). The spectrum of this “flow” (i.e., one-
parameter group of measure-preserving transformations),
by which is meant the spectrum of corresponding one-
parameter unitary group on L,(W), was determined by H.
Anzai and S. Kakutani, starting from the homogeneous chaos
work of Wiener, exemplifying a relation to ergodic theory.

Ultimately it was seen that not only orthogonal transfor-
mations on the space of real square-integrable functions
but also unitary transformations on the corresponding com-
plex space act via an extension of I', which leaves invariant
the homogeneous chaos decomposition of L,(H). This com-
plex extension can be correlated with the theory of Bose-
Einstein quantum fields in such a way that the invariant
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subspaces in question of L,(H) become just the so-called n-
particle subspaces. However, it was not until more than a
decade after Wiener’s work that quantum field theory was
subsumable under a clear mathematical theory, especially
in its wave aspects, to which the Wiener space formulation
corresponded. A heuristic treatment of particle aspects had
been given by V. Fock in 1932. The mathematical formula-
tion in the dissertation of J. M. Cook and its equivalence
with the “wave” representation (which, e.g., diagonalized
the quantum fields at fixed times) has been fundamental
in the mathematical theory of quantum fields and espe-
cially in work on the construction of nonlinear fields.

Wiener thus intuited a major feature of Bose-Einstein
quantization apparently without the stimulus of the phys-
ics of the production of particles, which he did not treat.
He considered at length the mathematical treatment of
light, particularly in his Generalized Harmonic Analysis, but
stopped short of the quantized radiation field, which had
earlier been introduced by Dirac to explain the emission
and absorption of light. The path-space formulation of quan-
tum theory proposed by R. P. Feynman around 1950 is,
however, formally closely related to Wiener space. The
heuristic Feynman integral was connected with the Wiener
integral by R. H. Cameron and by M. Kac. In a more ad-
vanced form, this work underlies the influential “euclid-
ean” two-dimensional model for quantum field theory es-
tablished principally by E. Nelson.

HARMONIC ANALYSIS IN PERSPECTIVE

It was primarily the symmetry of temporal homogeneity
that underlay Wiener’s central work in stochastic and har-
monic analysis, as well as his strong interest in ergodic
theory, which connected with both subjects. The original
Tauberian theory of Hardy and Littlewood, largely directed
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toward applications in analytic number theory, has no such
connection. Wiener’s work in developing it foreshadowed,
as he was aware, the generalization of harmonic analysis to
a wide class of commutative groups, of which the groups of
temporal and spatial displacements that he treated were
quite special cases. He and Paley were among the first to
note possibilities for such generalization, but in line with
his general attitude, he found it more interesting to treat
more directly applicable and less abstract matters.

The development of the theory of harmonic analysis on
general locally compact commutative groups, basically com-
plete by the mid-forties, confirmed this insight. In a way
the analog of the Plancherel theory on Wiener space, which
was connected with Wiener’s Gaussian approach to finite-
dimensional Plancherel theory, could be construed as a
generalization of harmonic analysis to a different group.
There is no direct analog to Lebesgue measure in a Hil-
bert space, but as indicated above, there is an analog to
Gaussian measure. Although vector displacements do not
leave this measure invariant, they change it in a simple
way, and the germ of harmonic analysis based on this mea-
sure can be extracted from Wiener’s treatment in Gaussian
terms of harmonic analysis on the real line in his book on
the Fourier integral. Thus from an abstract mathematical
point of view, both of Wiener’s central areas of research—
integration in function space and harmonic analysis on the
line—can be regarded as prototypical instances of analysis
on commutative groups, of two extreme types. Moreover,
this point of view has even technical cogency, as shown by
the refinement of classical inequalities on the line by using
ideas from analysis in Hilbert space developed by L. Gross.

Wiener’s work in harmonic analysis derives from his early
imprinting in the Hardy-Littlewood school of “hard” analy-
sis, although its ultimate effect was to “soften” it consider-
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ably. In essence it dealt with L, harmonic analysis on the
real line R, in contrast to L2 harmonic analysis in infinitely
many dimensions, or analysis on Wiener space. L,, the
space of all square-integrable functions, is simple in that it
is invariant under Fourier transformation, but L, is not;
this is the nub of the difficulty for Wiener’s prototypical
result on the invertibility of an absolutely convergent Fou-
rier series that nowhere vanishes. On the other hand, the
convolution of two functions in L, is again in L;, which is
not the case for the functions in L,. Thus L,;(R) forms an
algebra, essentially a subalgebra of the convolution alge-
bra A of all countably additive complex-valued measures
on R. The basic results of Wiener’s Tauberian Theorems,
and of later collaborations with Cameron and Pitt, are to
the effect that an element a of A has an inverse (in A)
provided its Fourier-Stieltjes transform vanishes nowhere
(an obviously necessary condition) and if, in addition, the
continuous singular component of a is small relative to the
other components. In more classical terms, this amounts
to the solubility of an integral equation of convolution type.

Wiener gave an alternative formulation of this result as
it applied to L,. If f{x) is a given element of L,, then the
finite linear combinations of its translates f(x + ¢), where ¢
ranges over all of R, are dense in L, if and only if the
Fourier transform of fis nowhere vanishing. Wiener showed
the same was true for L, if “nowhere vanishing”—which
was meaningless for L, functions, since their Fourier transforms
are ambiguous on sets of measure zero—was changed to
“non-vanishing almost everywhere.” He raised the question,
which became known as “Wiener’s conjecture,” of whether
the L, result also applied to L, for other values of p. This
was a natural direction of refinement of his Tauberian theory
paper, but a decade later I showed that the conjecture was
false for 1 < p < 2, although essentially trivially true for p > 2.
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Somewhat later, A. Beurling gave an necessary and suffi-
cient condition for the translates of a given function f to
span L, in the sense indicated, provided fwas in all the L
spaces for 1 < g < oo. Shortly afterward he reduced the
Riemann hypothesis to a plausible question of spanning in
L,. This remains unresolved, but the reduction confirms
the potential of the direction that Wiener established for
dealing with the issues in analytic number theory with which
Hardy and Littlewood were most deeply concerned, and in
which Wiener had a lifelong interest.

Ultimately the treatment of Tauberian theory became
quite algebraic, a development foreshadowed by aspects of
the work of Wiener and Beurling, but completed by the
Gelfand school, myself, and others. With the realization
that L; was a natural generalization of the group algebra
of a group to the case in which the group G was the addi-
tive group of R, general locally compact groups (essentially
only such admitting well-defined L, spaces) were studied
along similar lines. The analogs of the results of Wiener
and his colleagues were valid for arbitrary abelian or com-
pact groups, but not in general.

Another algebraic direction derived from the reformula-
tion of Wiener’s basic theorem in terms of ideal theory:
The closed ideal generated by a given function fin L, (asa
convolution algebra) is all of L, if and ounly if the Fourier
transform of fis nowhere vanishing. For an arbitrary func-
tion fin L,, every function in the closed ideal it generates
evidently vanishes wherever the Fourier transform of fdoes;
but are all such functions in this ideal? Alternatively, one
may ask whether the finite linear combinations of the f{x + ¢)
are dense in the subset of L, consisting of functions whose
Fourier transforms vanish where that of f does—the “spec-
tral synthesis” question. Algebraic methods show that van-
ishing of the Fourier transform on an open set including



- NORBERT WIENER 419

the zeros of the Fourier transform of fis sufficient, and
from this it is deducible that if this zero set is sufficiently
simple in structure then the indicated question has an af-
firmative answer. But in general the answer is negative,
and no explicit necessary and sufficient condition for a
given set of zeroes to imply spectral synthesis for functions
whose Fourier transforms have such zeroes is presently known.

Wiener’s responsiveness to colleagues and scientific trends
was in conjunction with his versatility the source of many
shorter papers in a variety of areas not yet mentioned.
Some of these include gems of insight that are still cited,
such as his early work in logic. But he will probably be
remembered chiefly for his work in functional integration
and real and complex harmonic analysis, and aspects of
ergodic and potential theory, on the pure mathematical
side, and for cybernetics and rigorous excursions into sta-
tistical mechanics and the theory of light on the applied
side.

PERSONAL AND SOCIAL LIFE

Wiener was at the opposite end of the spectrum from
ivory tower scientists or academic philosophers. All his life
he remained an intellectual whose vocation and responsi-
bility was to contribute to civilization and society as a whole.
He felt that it was his bent and duty to remain an individu-
alist who stood apart from institutional establishments, but
he faced the world steadfastly. He was elected to the Na-
tional Academy of Sciences in 1933, but resigned a decade
later, giving as his primary reason his opposition to prizes,
special honors, and exclusivity in science. In Ex-Prodigy he
wrote:

... my early rejection by Phi Beta Kappa [while an undergraduate at Tufts
College] has strengthened me in a policy on the basis of which I have
resigned from the National Academy of Sciences and have discouraged my
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friends in attempts to obtain for me similar honors elsewhere. . . . My
reaction is essentially the same at the present day as it has been for nearly
forty years—that academic honors are essentially bad, and that other things
being equal, I choose to avoid them.

His reasons for resigning from the Academy are ampli-
fied in his letter of September 22, 1941, to Dr. Frank B.
Jewett, then president of the Academy:

The academy operates in at least three distinct roles, and te my mind
these roles are not compatible with one another. . . .

As to the third purpose of the Society——the conveying of honors—I have
no sympathy at all. I have always regarded exclusiveness as an attribute
chiefly of use in selling unwanted junk to parvenus. I do not wish to belong
to any scientific organization which has more than one grade of member-
ship. . . .

As to medals, prizes, and the like, the less said of them the better. The
heartbreak to the unsuccessful competitors is only equalled by the injury
which their receipt can wreak on a weak or vain personality, or the irony of
their reception by an aging scholar long after all good which they can do is
gone. I say, justly or unjustly administered, they are an abomination, and
should be abolished without exception. With these convictions I can only
resign from the National Academy of Sciences and rectify the error, com-
mitted under the well-meaning appeals of my friends, which I committed
in accepting membership in it. . ...

President Jewett’s reply, dated September 24, is as follows:

While I still feel you are making a mistake and that you can render
better service by staying inside the Academy and using your influence to
make it conform more nearly to what you think it should be, I realize that
you alone must judge your desires.

I am sorry I have not been able to dig up a prob]em which would show
you the value I see in a body like the Academy, even though it is not all I
myself should like to have it. However, one cannot always produce white
rabbits out of a hat on demand.

Whatever your final decision, believe me to be your friend.

On October 14, 1941, the Council of the Academy met and
later telegraphed Wiener: “Resignation accepted with regret.”
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Wiener also thought twice about accepting the National
Medal of Science, which he received two months before
his death, worrying that it would erode the independence
and consistency of his position. His persistent uneasy rela-
tions to authority in one form or another tend to bring to
mind the complex and exceptionally close relations with
his father, detailed in his autobiographical volumes. In the
introduction to the first volume he wrote:

There is a great temptation to write an autobiography in the Freudian
jargon, more especially when a large part of it is devoted to the very Freud-
ian theme of a father and son conflict. Nevertheless I shall avoid the use of
this terminology. . . . Yet I cannot deny that Freud has turned over the
stone of the human mind and shown a great population of pale and emo-
tionally photophobic creatures scuttling back into their holes.

Those who knew Wiener could hardly help but be struck
by the applicability of his description of his father to him-
self, both as regards temperament and general intellectual
tendencies, and he himself wrote that “. . . my father, . . .
notwithstanding all the elements of conflict between us,
was my ideal and closest mentor.”

All his life Wiener remained essentially a youthful fig-
ure, fraternal rather than paternal in his interactions, in de
Jacto respects, apart from his scientific seminality. He was
reactive rather than judicial, instructive rather than accom-
modating, deeply devoted to the highest ideals of scientific
detachment and truth at the same time that he was person-
ally quite concerned about the relative quality of his achieve-
ments, future as well as past.

Wiener would on occasion become absorbed in intricate
questions of technique, as shown for example by the counter-
example he developed with Pitt to the invertibility of an
- arbitrary nonvanishing absolutely convergent Laplace-Stieltjes
transform. But this was not his main concern or forte. He
preferred the challenge of a qualitatively new issue, or the
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synthesis of new relations between existing developments
to technical perfection and organization—as, he wrote, had
his father also.

Moreover, he preferred a concrete incision to an ab-
stract envelopment, other things being equal, even though
his true calling was ideational rather than technical. An
instance of this was his anticipation independently of Ba-
nach of the concept and some of the theory of complete
linear normed vector spaces. Following his initial paper,
he seemed content to leave it to others to develop this
subject, preferring more structured and applicable, if no
less penetrating, areas of research. Another instance was
his apparent disinterest in the algebraic methods that de-
veloped partly from his work in harmonic analysis.

The algebraic approach, initiated by M. H. Stone in the
United States, greatly advanced by Gelfand and his school
in the Soviet Union, and applied by myself and others to
harmonic analysis and general groups, enormously simpli-
fied and greatly extended Wiener’s work on the invertibility
of absolutely convergent Fourier-Stieltjes transforms, in-
cluding the basic Tauberian theorem. Wiener’s work was
catalytic in the development of this approach, and Wiener
was apparently satisfied to have acted as such and was
not deflected from ongoing research.

Wiener’s drive, flexibility, breadth, and vision made it
possible for him to make significant original contributions
in subjects that he came to largely en passant. On the other
hand, no one of Wiener’s scientific range could be an ex-
pert on all of the subjects in which he took an interest.
His work on relativity, quantum theory, light, and statisti-
cal mechanics for the most part display topical imagina-
tion more than mature scholarship. But some of this work,
such as his theory of the coherency of light, has been quite
significant.
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His reactive and fraternal nature facilitated his personal
scientific interactions, and his ideas often developed from
groundwork and salients by colleagues developed shortly
before he appeared on the scene. It was his unique capac-
ity to sense the potential importance of such salients
when appropriately grouped together, and to quickly
envision and develop a synthesis that only in retrospect
can be seen to carry earlier developments to a logical
conclusion.

His autobiographical books, Ex-Prodigy (1953) and I Am
a Mathematician (1956), largely mark the end of the inno-
vative phase of his scientific career, apart from his con-
tinuing work on prediction theory and some unsystematic
excursions. His main motive in writing his unusually per-
sonal yet philosophical autobiographical books was that

I wish to think out to myself what my career has meant and to come to that
emotional peace which only a thorough consideration and understanding
of one’s past bring.

Psychosocially, Wiener was sui generis. His personality
reflected passionate individualism, a broad and active in-
volvement in society and civilization, and a restless intel-
lectual drive. He was a colorful figure and wit, and he
became the center of a large accumulation of anecdotes,
which he rather enjoyed. An example, which may be well
known because it occurred on more than one occasion,
was that of his meeting a colleague midway between his
office, where he worked regularly even after retirement,
-and the faculty club, where he took lunch. On disengage-
ment following an intense conversation, Wiener turned
back and said to his colleague, “By the way, which way was
I going when I met your” “Why, that way,” said the puzzled
colleague. “Oh good,” Wiener replied, “in that case, I've
already had lunch!”
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ACADEMIC CAREER

Wiener was a generally extroverted man with many
friends, and, for the most part, enjoyed exceptional scien-
tific respect. Still, his independence from conventional dis-
ciplinary and other categories and especially outspoken
perceptions, insights, and devotion to principle as he saw
it fostered reservations and misunderstandings on occasion.
Many awards and honors came to him, but he received
relatively few invitations to outstanding academic positions
such as his early work amply merited and that would have
facilitated his research and increased his influence. Vesti-
gial antisemitism may also have played some part in this,
as he believed.

Among the prizes he did receive were the Bowdoin Prize
(1914) from the Harvard graduate school; the Bocher Prize
(1933) of the American Mathematical Society, for outstanding
research in analysis, jointly with Marston Morse; the Lord
and Taylor American Design Award (1949); and the ASTME
Research Medal (1946). He received honorary Sc.D. de-
grees from Tufts University (1946), the University of Mexico
(1951), and Grinnell College (1957). He was one of the
first to be awarded the National Medal of Science. On this
occasion, January 13, 1964, President Lyndon B. Johnson
made the following citation:

For marvelously versatile contributions, profoundly original, ranging within
pure and applied mathematics and penetrating boldly into the engineering
and biological sciences.

Following his death, President Julius A. Stratton of the
Massachusetts Institute of Technology wrote of him:

One of the world’s great mathematicians, he was also one of MIT’s most
distinguished professors. During his forty-five years of association with this



NORBERT WIENER 425

faculty he was a symbol of fine scholarship, and indeed of the highest goals
of MIT. We respected him not alone for his productive and creative mind
but equally for his warmth of understanding and for his humanity.

EPILOGUE

Wiener vitalized analysis, the branch of mathematics that
primarily originates in external issues, at the medium level
of abstraction that held together the concrete questions
that flow into it from outside with an inner, concentrated
logic of its development. He was conscious of this role,
and while appreciative of the trend of emphasis on inter-
nal issues (topology and algebra) in American mathemat-
ics that he largely ascribed to Oswald Veblen, expressed
concern that it had gone too far, not only for relevance
outside of pure mathematics but for optimal growth of this
subject itself. In 1938, at the height of his pure mathemati-
cal achievements, he expressed himself as follows:

It is a falsification of the history of mathematics to represent pure math-
ematics as a self-contained science drawing inspiration from itself alone
and morally taking in its own washing. Even the most abstract ideas of the
present time have something of a physical history. It is quite a tenable
point of view to urge this even in such fields as that of the calculus of
assemblages, whose exponents, Cantor and Zermelo, have been deeply in-
terested in problems of statistical mechanics. Not even the influence of this
theory on the theory of integration, and indirectly on the theory of Fourier
series, is entirely foreign to physics. The somewhat snobbish point of view
of the purely abstract mathematician would draw but little support from
mathematical history.

After the distraction of the war, during which he devel-
oped as his major contribution to the war effort his treat-
ment of stationary Gaussian processes, he preferred to pursue
potential applications of mathematics to a variety of fields
in which he felt a special challenge and interest. Further
systematic pure mathematical work along the lines he had
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initiated he was largely content to leave to his disciples
and others. In his later work, modeling life as a system, he
showed how the concepts of feedback, smoothing, spec-
trum, and the like that were familiar in engineering and
physical systems are relevant to biology and social science.

His influence reinforced and anticipated many trends in
science and technology that were organized by him under
the rubric of cybernetics. He was as an active proponent of
the development of large-scale, high-speed computers long
before the need for and potential of them was broadly
recognized. Computer modeling of the brain and artificial
intelligence developed in substantial part from his influ-
ence, applied within collaborative groups in the Boston
area. As a scientifically charismatic figure with a consider-
able literary flair and, above all, a remarkable capacity for
relevant theoretical innovation and synthesis, he may have
been unsurpassed in his impact on the general scientific
scene of his day.

His scientific career and personality were unique. Yet
his works stand overall as an outstanding model in this
century for a life of synthesis of pure intellectual penetra-
tion with external relevance.

1 THANK J. L. Doob, P. Elias, W. T. Martin, B. McMillan, W. A.
Rosenblith, and M. H. Stone for valuable communications
about aspects of Wiener’s works and life. This biography was
based in part on biographical data prepared by Wiener for
the National Academy of Sciences and supplied by the Office
of the Home Secretary. Thanks are also due the MIT Ar-
chives, and especially to Ms. Kathleen Marquis for the provi-
sion of copies of Wiener’s letters and other material. I thank
the MIT Museum for Wiener’s photograph and background
information.
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Wiener’s collected works, exclusive of his books, have been
published with commentaries by MIT Press, Cambridge, Mas-
sachusetts, edited by P. Masani, in four volumes, 1976-85. A
special issue of the Bulletin of the American Mathematical Society,
vol. 72, no. 1, part II (1966), was dedicated to Wiener and
includes reviews of his works, organized by field.

1894
1906

1909

1909-10
1910-11
1911-13
1913-14

1914-15

1915-16

1916-17
1917-18
1918

1918-19
1919

1919-24
1925-29
1929-32

1932-59

CHRONOLOGICAL SUMMARY

Born November 26 in Columbia, Missouri
H.S. diploma, Ayer High School, Ayer, Massa-
chusetts ,
B.A. cum laude in mathematics, Tufts College
Harvard University
Cornell University
Harvard University—M.A., 1912; Ph.D., 1913
Travelling Fellow, Harvard University; study with
Bertrand Russell, Cambridge, England, and with
David Hilbert, Gottingen, Germany; awarded Bowdoin
Prize (1914)
Travelling Fellow, Harvard; study with Bertrand
Russell and G. H. Hardy, Cambridge, England,
and at Columbia University
Harvard University, Docent Lecturer, Department
of Philosophy
University of Maine, Instructor in Mathematics
General Electric Corporation, Lynn, Massachusetts
Staff Writer, Encyclopedia Americana, Albany, New York
U.S. Army Aberdeen Proving Ground, Maryland
Editorial Writer, Boston Herald
MIT, Instructor in' Mathematics
MIT, Assistant Professor of Mathematics
MIT, Associate Professor of Mathematics; Bocher
Prize, American Mathematical Society (1933)
MIT, Professor of Mathematics; Lord and Taylor
American Design Award (1949); Hon. Sc.D.,
Tufts College (1946), University of Mexico (1951),
and Grinnell College (1957)
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1959-60 MIT, Institute Professor; ASTME Research Medal
(1960) ‘

1960-64 MIT, Institute Professor Emeritus; National Medal
of Science (1963)

1964

Died in Stockholm, Sweden, March 18
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