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Rosenblatt was born in New York City on September 7, 1926, the younger of two 
sons of Hyman and Ester (Goldberg) Rosenblatt, immigrants from Ukraine and Poland, 
respectively. Murray’s older brother, David, and his spouse, Joan, were also mathemati-
cians/statisticians of some note. Both had distinguished careers working in the federal 
government, with Joan spending her entire professional career at the National Institute 
of Standards and Technology (formally the National Bureau of Standards). Murray 
graduated from high school at the age of 16 and then proceeded to study mathematics 
at City College of New York (CCNY) in 1942. While at CCNY, Murray focused on 
courses in mathematical physics and thermodynamics. He was inspired by one of his 
analysis professors, Emil Post, who encouraged him to continue studying mathematics. 
After completing a bachelor of science degree at CCNY in 1946, he entered the graduate 
program in mathematics at Cornell University in 1946. Although having no previous 
experience in probability and statistics, he was exposed to two giants in the field—
William Feller and Marc Kac—who in turn generated a great deal of synergy in proba-
bility that rubbed off on Murray. They were exciting times at Cornell, which attracted a 
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number of promising young visitors, including Joseph Doob, Monroe Donsker, Donald 
Darling, and Kai Lai Chung. Murray’s first courses in probability theory and mathe-
matical statistics were taught by Feller. In the end, he chose Kac as his Ph.D. supervisor 
because he found his personality more compatible with his own and because he allowed 
students more independence in their choice of research topics.

During his undergraduate years, Murray had a chance encounter with what was to be 
his future wife, Adylin Lipson, at the Fordham Road Library in the Bronx. Apparently, 
Adylin, known as Ady, did not make a positive first impression on Murray’s mother. 
She blamed Ady for enticing Murray into walking home from the library in the rain, 
whereupon he developed a severe cold. Ady was also born and raised in the Bronx, 
received a bachelor’s degree in social work from Hunter College in 1947 and would later 
earn a master’s degree from San Diego State University in 1971. They were married in 
Ithaca in 1949, shortly after Murray received his Ph.D., and the couple spent one year in 
Ithaca before Murray began his academic career at the University of Chicago.

Career

After entering graduate school at Cornell, Murray’s interest in analysis and thermody-
namics naturally attracted him to Kac’s work on statistical mechanics. He chose to work 
with Kac because he “sort of left you alone without saying you’ve got to do this or that 
so forth and so on. He let you go your own way.” This advising philosophy would serve 
as Murray’s mantra in mentoring his own Ph.D. students. As Murray described it, his 
dissertation, “On distributions of certain Wiener functionals” was “an attempt to mildly 
generalize some results of Kac” that were related to the seminal Feynman-Kac formula. 
The thesis, published in the Transactions of the American Mathematics Society under 
the title “On a class of Markov processes,” derived properties of the Laplace transform 
of the distribution of certain integral functionals of Brownian motion. The resulting 
transform is found as a solution to a type of partial differential equation. Following his 
defense, Murray remained at Cornell for another year, supported by Kac’s Office of Naval 
Research grant.

After finishing his work at Cornell, academic positions were scarce, and Murray was 
about to accept a government job when the University of Chicago stepped up and 
offered him a position in their statistics group. Murray believed that Kac likely played 
a behind-the-scenes role in making this connection. Murray joined the Committee of 
Statistics, the precursor to the Department of Statistics, at Chicago, that was then headed 
by W. Allen Wallis and included a number of budding young researchers that included 
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Jimmy Savage, Leo Goodman, Raghu Raj Bahadur, William Kruskal, and Charles Stein. 
It was at Chicago in 1951–52, when Murray first met Ulf Grenander, a young Swedish 
scholar. They would strike up a short but productive collaboration that produced a 
number of highly influential time series papers dealing primarily with estimation in the 
spectral domain. One of their few time domain papers considered estimation of a linear 
regression model with time series errors. They provided conditions on the regressors and 
the spectrum of the error process in order for ordinary least squares (OLS) estimates to 
be asymptotically efficient. This is one of the fundamental results in times series analysis. 
Much of their collaborative work appeared in their much-acclaimed 1957 book Statis-
tical Analysis of Time Series. This book became a must-read for both practitioners and 
researchers in time series for decades. With the large number of bright young researchers 
and an active visitors program, the environment at Chicago was nearly ideal for someone 
like Murray. In addition to writing a couple of papers with visiting scholar Joe Hodges, 
he was also inspired by Bahadur. Murray credits his discussions with Bahadur at the 
beginning of his “little paper” on nonparametric density estimation,1 which appeared 
in the Annals of Mathematical Statistics in 1956. Of course this “little paper,” which 
currently has around 5,000 citations, was the first to introduce kernel density estimation. 
This has now become one of the standard nonparametric estimation techniques and 
generated a rich and important line of research activity.

In 1956, Murray left Chicago for the mathematics department at Indiana University, 
where he struck up a collaboration with Julius Blum. The stint at Indiana lasted only a 
few years before he landed at Brown University in 1959. Returning to the East Coast had 
many attractions, including the opportunity to meet regularly with researchers at nearby 
Bell Laboratories. There he interacted with David Slepian and others who triggered his 
interest in modeling physical science phenomena. Motivated by a problem in human 
vision, Murray and Slepian wrote a paper on a nth order Markov process in which n 
variables are independent but (n+1) variables are dependent.2 While visiting Bell Labs, 
Murray met one of John Tukey’s Ph.D. students, David Brillinger, who was working on 
higher-order properties of times series models. This interaction developed into a series of 
collaborative papers on higher-order spectra.

During his Brown years, Murray had an opportunity to visit the Statistics Department 
at Columbia University. It was there that he wrote perhaps his most well-known paper, 
“A central limit theorem and a strong mixing condition,”3 which introduced the strong 
mixing condition. This work was motivated in part by an idea of Serge Bernstein that 
broke up sequences of random variables into nearly independent blocks of random 
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variables. The condition on the blocks, which specifies that they become roughly inde-
pendent as the blocks grow in size and the separation increases, is in essence the strong 
mixing condition.

Murray left Brown for the newly created University of California at San Diego (UCSD) 
in 1964. Scripps Institution of Oceanography predated the university, and its strong 
research group that was analyzing a multitude of time series, not to mention the San 
Diego weather, was a major attraction. Murray arrived in 1964, one year before the first 
undergraduates were admitted. These were heady times to be part of the new faculty 
that in a short time would turn UCSD into a world-class research university. UCSD was 
fortunate to have attracted a number of talented young probabilists and continues to this 
day to have a major presence in probability theory.

Technical Contributions

Strong Mixing and the Central Limit Theorem

In his most celebrated paper, Rosenblatt introduced the notion of strong mixing for 
stationary time series. If {Xt } is a stationary time series, then strong mixing specifies the 
rate at which events defined by two sets of random variables separated by m- time lags 
become independent. So for example, if and , are 
σ-fields generated by the past relative to time 0 and the future of time n, then the time 
series is said to be strong mixing if 

 
where the mixing function α (.) decreases to zero as n → ∞. Although other mixing 
conditions existed around that same time, including m-dependence in which random 
variables separated by more than m-time lags are independent, Rosenblatt, in his under-
stated manner, wrote, “The strong mixing condition used in this paper seems to be a 
more intuitively appealing formalization of this notion than most others.” Of course 
he was right, as the strong mixing condition became one of the most commonly used 
conditions to establish a central limit theorem (CLT). Under a mean zero and finite 
2+δ-moment condition on Xt, a growth restriction on the variance of the partial sums, 

, and a convergence rate on the mixing function to 0, Rosenblatt showed 
that  was asymptotically normally distributed, although his results were more 
general than stated here. The idea of the proof was based on Bernstein’s big-block small-
block construction. Essentially, the sequence of random variables X1,…,Xn is separated 
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into kn blocks of size pn+ qn, where pn and qn are the sizes of the big and small blocks, 
respectively with n=kn(pn+ qn). Now the big blocks of random variables are separated by 
qn lags, and hence these blocks of random variables become independent via the strong 
mixing condition. The sum over the small blocks become negligible in the limit, and 
hence the sum Sn can be viewed as roughly a sum of kn independent random variables 
that are asymptotically normal by the standard CLT.

Kernel Density Estimation

Rosenblatt’s 1956 seminal paper on nonparametric density estimation introduces the 
kernel density estimate.4 The objective of this paper was to construct an estimate of 
the probability density function (pdf ) f (x) from a sample of independent and identi-
cally distributed random variables X1,…,Xn having density f. The motivation for the 
kernel estimate comes from taking the difference of the empirical distribution function 

 So an obvious estimate of the pdf is given by the difference,

where h=hn is the bandwidth that is a function of the sample size n that converges to 0 
with increasing n. Using well-known properties of Fn, it is straightforward to derive the 
corresponding statistical properties of fn. Assuming the existence of three derivatives of f, 
he showed that the optimal choice of the bandwidth that minimizes the asymptotic inte-
grated mean squared error,  

This naive estimate is an example of a kernel density estimate in which the kernel 
, and 0, otherwise. More generally, this paper considered kernel 

density estimates given by

where and 
 The mean-squared error of these estimates is of order . This 

basic idea was extended by many others to additional sorts of problems, including 
nonparametric regression estimates. A great deal of effort went into designing optimal 
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kernel functions. Rosenblatt continued his research on nonparametric density estimation 
throughout much of his research life, and one of his most noted papers is with Bickel on 
global measures of density estimates, which appeared in the Annals of Statistics in 1973.5 
The idea was to consider the kernel density estimate a) for constructing uniform confi-
dence bands for f of the form  and b) for constructing goodness of fit tests for 
the null hypothesis H:f=f0 using the test statistic

The limit theory was based on the heuristic that the process which 
was asymptotically independent for distinct and fixed values of x, behaved locally like 
a stationary Gaussian process. The resulting test statistic could then be described as a 
maxima of a Gaussian process over an increasing interval on the real line. The results 
were ahead of their time, as the Bickel and Rosenblatt paper also made detailed use of 
the limiting distribution (Gumbel) of the maxima of a Gaussian process under different 
smoothness conditions.

Limit Theory for Long Memory Processes

In his 1960 Berkeley Symposium paper, “Independence and Dependence,” Rosenblatt 
considered limit theory for partial sums of stationary sequences exhibiting long memory. 
In such a setting, the CLT he had established for strongly mixing sequences no longer 
applied. In this paper, he considers a function of a stationary Gaussian process {Zt} with 
mean 0 and autocovariance function with . He chose the 
simplest nonlinear function of {Zt} (linear functions would again be Gaussian and not 
of interest) given by , which again is a mean zero stationary time series. But 
this process is not strong mixing. The spectral density function of the Zt has a singularlity 
of the form |ω|γ-1 in a neighborhood of the origin. Rosenblatt then established the limit 
distribution of the normalized partial sums, . Given the long-memory of 
the process, the variance of the partial sums grows at a much slower rate and hence the 
normalization is much smaller, nγ-1 compared to the usual  In addition the limit 
distribution is non-normal. This example has generated a great deal of interest, and it was 
picked up by others, specifically M. S. Taqqu6 and R. L. Dobrushin and P. Major.7 They 
extended this notion to a wide range of processes and were able to classify functional 
limits of the partial sum process.
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Bispectrum

Much of the early work in time series had a strong frequency domain flavor, with 
focus on the second-order spectrum. It was found that second-order models were not 
sufficiently rich to model a range of physical phenomena. In the late 1950s and early 
1960s, A. Kolmogorov urged the young scholars V. P. Lennov and A. N. Shiryaev to 
consider higher-order models with a view towards describing nonlinear behavior. Such 
models require analysis that goes beyond the standard spectral analysis, which only dealt 
with second-order properties (covariance function) of the process. In the mid-1960s, 
Rosenblatt began to work in a similar vein on higher-order spectra. Around this time, a 
promising Princeton Ph.D. student, David Brillinger, who was working at Bell Labs, was 
inspired by Rosenblatt’s work and an important collaboration was formed. In a series of 
influential papers in 1967, Brillinger and Rosenblatt developed the asymptotic theory 
for estimates of the cumulant spectrum under mixing conditions. This research set the 
stage for identification of nonlinear time series models. Rosenblatt continued working on 
higher-order spectral theory throughout his professional career. These ideas played a key 
role in modeling non-minimum phase and non-Gaussian linear processes. These ideas 
also played a role in his books Stationary Sequences and Random Fields and Gaussian and 
Non-Gaussian Linear Time Series and Random Fields.

Other Major Contributions

Rosenblatt made major contributions in a number of other areas as well. Much of this 
work seemed to be motivated by a conjecture by N. Wiener8 that gets at the heart of 
general time series modeling. The setup is the following. If {Xt} is a stationary process 
with  then when does the process have a one-sided causal representation, 
i.e., when does Xn have the representation,

for some iid sequence . Wiener conjectured that a necessary and sufficient 
condition for such a representation is that the backward tail σ-field be trivial, 

. Rosenblatt 9 showed this was true for Markov chains with 
a countable state space. Rosenblatt 10,11 discussed when this conjecture holds and fails. 
Aside from the full scope of when Wiener’s conjecture holds, one can see traces of this 
notion in many of Rosenblatt’s research areas. This includes his interest on limits of 
convolutions of probability measures on compact semigroups and in the deconvolution 
problem. The basic setting of the deconvolution problem is that the observations Xt  
come from a linear system driven by iid noise, i.e.,
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where the {ψj} represents a linear filter and {ξt } is iid noise. Then the question is, when 
can one recover the noise sequence? If the filter is known, this is relatively straight-
forward. But if the filter is unknown, then the goal is to deconvolve the filter from the 
noise. In a case in which the noise is Gaussian, then there is an identification problem. 
Rosenblatt studied this problem in the non-Gaussian setting using higher-order spectra 
and likelihood methods when the distribution of the noise is known. It is of interest to 
know when the filter is minimum phase, which corresponds to the case that the represen-
tation is one sided,  depending only on the past of the ξs, s≤t.  
So Wiener’s conjecture comes full circle to modern time-series modeling. 

Finally, there is the three-page Rosenblatt paper, “Remarks on a multivariate trans-
formation” in the Annals of Mathematical Statistics.12 The rather straightforward 
transformation described in this paper maps a random vector X=(X1,…,Xk) with an 
absolutely continuous distribution into a random vector in which the components are 
iid uniform on (0,1). This is the multivariate analogue of the standard one-dimensional 
probability integral transform. Although this is not a deep result, it has proven extremely 
handy in modern statistics, especially in the context of copula modeling and goodness of 
fit of multivariate distributions. This paper has nearly 3,000 citations.

After Murray became Distinguished Professor Emeritus at UCSD in 1994, he remained 
actively engaged in research until the last few years of his life. After a courageous fight 
with cancer, Ady passed away in 2009. The Rosenblatts had two children, daughter Karin 
(currently of Champaign, Illinois) and son Daniel (of Live Oak, Texas). Murray advised 
twenty-two dissertations, and to many of these Ph.D. students, he and Ady served as 
surrogate parents during their graduate school years. He was there for his students with 
great encouragement and support. In celebration of Murray’s 90th birthday, the Murray 
and Adylin Rosenblatt Endowed Lecture Series in Applied Mathematics was created at 
UCSD in 2016.13

Concluding Remarks

Murray Rosenblatt had amazing intuition and insight about random phenomena—it 
was a sixth sense about how things should work. He was a scholar who seemed to never 
have forgotten a historical fact or theorem. To his Ph.D. students, he appeared to be the 
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most knowledgeable person, on topics from geography to history to the physical sciences 
and mathematics, that they ever encountered. While Murray had a soothing and relaxing 
style of lecturing, he could be laconic in both his writings and verbal communication. 
The latter could be especially perplexing to new researchers trying to decode his thoughts 
and insights on various mathematics problems. It was not uncommon for a former Ph.D. 
student or young colleague to only fully grasp what Rosenblatt had clearly understood 
and tried to convey years earlier: “Oh, that is what Murray meant” was a common 
thought. Murray’s advising approach replicated the one he experienced with Kac. He 
would let his students work on what they wanted and left them to their own devices. But 
he offered clear guidance, especially when students were struggling to find their way. He 
made all of his students feel important regardless of their aptitude and provided behind 
the scenes support in job searches and other endeavors to help further their careers.

Later in life Rosenblatt became fascinated with Chinese silk and became a quasi-expert, 
an expression he liked to use, on all things related to the manufacturing and production 
of the fabric. He loved going on long walks and hiking in the mountains whenever he 
had the chance. Even at an advanced age, it was difficult for his younger companions 
to keep up with his pace. In later years, Murray and Ady very much enjoyed spending 
holidays in Hawaii with his brother David and sister-in-law Joan.

Stigler’s law of eponymy states that no scientific discovery is named after its original 
discoverer. Murray would occasionally echo sentiments similar to this law to his Ph.D. 
students, who although they were enthusiastic, they were naïve and did not know 
better.14 So it is somewhat ironic that a number of terms in probability and statistics now 
bear the Rosenblatt name. This includes the Rosenblatt transformation and the Rosen-
blatt process, and sometimes strong mixing is referred to as Rosenblatt mixing. Murray 
also tended to eschew labels. Was he a probabilist, a statistician, a mathematician? He 
spent his entire academic life in a department of mathematics as opposed to a statistics or 
engineering department. His affinity towards mathematics was never more evident than 
during one of our last conversations when I asked, “What are you thinking about these 
days?” Murray responded, “I am thinking about the foundations of mathematics.” He 
then pointed me to the book on his desk, Princeton Companion to Mathematics, a heavy 
read that he was currently working through.  
Question answered—always a mathematician.
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MAJOR HONORS

1955 Fellow, Institute of Mathematical Statistics 
1965-66 Guggenheim Fellow 
1970 Wald Lectures 
1971-72 Guggenheim Fellow 
1975 Fellow of the American Association for the Advancement of Science 
1979 Overseas Fellow, Churchill College, Cambridge University 
1984 Elected to the National Academy of Sciences 
2009 Fellow of the Society for Industrial and Applied Mathematics 
2014 Fellow of the American Mathematical Society
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