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John Norman Mather was a renowned mathematician 
who made important contributions to the fields of singu-
larity theory and mechanics. The theorems he developed for 
understanding singularities of smooth mappings, for model-
ing singular spaces and for explaining the chaotic behavior 
of orbits of frictionless mechanical systems were among the 
most important contributions to mathematics in the last fifty 
years.

1. Early Life, Education and Career

John was a thirteenth-generation American. His ancestor, 
Richard Mather came to New England on the ship James in 
1635 and was the grandfather of the Puritan clergyman Cot-
ton Mather.

John’s father, Norman Mather, was a Princeton Univer-
sity professor of electrical engineering. John learned about 
mathematics from his father at an early age. While in high 
school, John attended junior-level mathematics courses at 
Princeton. He spent his undergraduate years at Harvard 
University, earning a bachelor’s degree in 1964, and his grad-
uate years at Princeton University, completing his Ph.D. 
in 1967. His advisor was John Milnor, who gave him the 
outstanding problem of trying to understand the structural 
stability of smooth mappings. Mather eventually succeeded 
in completely answering the question. His Ph.D. thesis,1 the  
Mather-Malgrange preparation theorem, became the first in-
stallment of this monumental achievement. 

In 1969, after two years at the Institut des Hautes Études 
Scientifiques, Mather was appointed associate professor at 

Harvard University. He was promoted to full professor in 
1971. During this period Mather became a central figure in 
the development of the intertwined theories of stability of 
smooth mappings and of stratification theory.  

In 1974 Mather accepted a visiting professorship at Princ-
eton University, joining his father on the faculty. His position 
was converted to a full professorship the following year. In 
Princeton, he devoted decades to understanding the chaotic 
behavior of orbits of frictionless mechanical systems. Aside 
from sabbatical leaves, Mather remained at Princeton for the 
rest of his life. 
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Mather’s mathematical writings reflected his meticulous 
attention to detail and exposition. He had a quiet and mod-
est personality with a subtle sense of humor. He was support-
ive and generous to his students and freely contributed ideas 
to their work. As his colleagues noted2 in their obituary for 
him, “John’s behavior never betrayed the slightest hint that 
he was a distinguished man with many international honors. 
He was unfailingly self-effacing, scrupulously honest, and al-
ways willing to be of service to others.”

Mather served for ten years on the editorial board of the 
Annals of Mathematics and for several decades on the edito-
rial board of the series Annals of Mathematics Studies pub-
lished by Princeton University Press. Mather received the 
John J. Carty Award for the Advancement of Science from 
the National Academy of Sciences in 1978 and became a 
member of the National Academy of Sciences in 1988. He 
received the Brazilian Order of Scientific Merit in 2000, 
the George David Birkhoff Prize in applied mathematics in 
2003 and the Brouwer Medal from the Royal Dutch Math-
ematical Society in 2014. His name is attached to Aubry–
Mather theory, Mather measures, Mather rings, the Thom–
Mather isotopy lemma, the Mather–Thurston theorem 
on foliations and diffeomorphism groups, and the Mather  
connecting theorem.

2. Overview of Mather’s work

John Mather was a world leader in two closely related sub-
jects: (a) stability of smooth mappings and processes, and (b) 
singularities of spaces and mappings.

Subject (a) has its origin in engineering. Suppose we have 
a system that appears to be working correctly and predict-
ably. Does a slight change in the initial conditions result in 
similar behavior (in which case we say the system is stable) 
or is it “chaotic” with wildly different behavior? How does 
an apparently stable system degenerate into a chaotic one? 
The same question may be asked of a smooth mapping. Do 
nearby mappings look the same, or are they wildly different? 
By “look the same” we could mean “up to smooth change of 
variables” or “up to continuous change of variables”, resulting 
in the notions of smooth stability of mappings and topological 
stability of mappings respectively (see §3 and §4). Mather 
made fundamental contributions to all these questions. His 
first breakthrough, a monumental series of six remarkable 
papers, answered every conceivable question concerning 
smooth stability of mappings (cf. §3).

Subject (b) has its origin in differential and algebraic ge-
ometry: the set of points x where f(x) = 0 is an object which 
typically is smooth but in many interesting cases, may have 
crinkles, corners, cusps, and other singularities. Ever since 
Solomon Lefschetz3 “planted the harpoon of topology into 
the whale of algebraic geometry,” mathematicians have 

attempted to understand the nature and topology of the sin-
gularities that occur when the function f is algebraic or an-
alytic. Is it possible that Cantor sets and fractals might arise 
as singularities in analytically defined subsets of Euclidean 
space?

Subjects (a) and (b) came together in the early 1960s 
when René Thom developed an audacious plan to under-
stand the topological stability of smooth mappings (cf.§4). 
Thom’s plan required a deeper understanding of the nature 
of the singularities of analytic sets than had been previously 
known (cf. §5). From 1967 to 1974, Mather orchestrated 
a remarkable exchange of techniques and results between 
these two areas. By 1975, he had turned Thom’s vision into  
reality.

After arriving in Princeton in 1975, Mather’s interests 
moved from stability to chaos (cf. §6). He spent decades dis-
covering examples and developing techniques to understand 
the chaotic nature of orbits of frictionless mechanical systems, 
in which Cantor sets and fractal sets arise naturally. In the 
words4 of his colleagues Charles Fefferman and David Gabai, 
“Mather’s work completely bypassed earlier approaches to the 
problem, and exhibited an entirely unanticipated mechanism 
by which chaos arises. His theorems on this theme are among 
the deepest and most original mathematical results of the last 
fifty years.” 

3. Smooth Stability of Smooth Mappings

In 1955, Hassler Whitney5 defined a smooth mapping f : 
M → P between smooth manifolds to be C ∞ stable if, for any 
sufficiently nearby mapping f´ : M → P there are diffeomor-
phism ϕ : M → M and ψ : P → P that transform f´ into f.

Whitney asked: Do stable mappings form an open and 
dense set in the space of all smooth proper mappings? For 
Morse functions and for mappings from the plane to the 
plane, Whitney showed the answer is “yes” and he was able to 
classify the smooth mappings. Whitney believed the answer 
would always be “yes.”

In 1960 René Thom6 dropped a bombshell: he found a 
smooth proper mapping R16 → R16 that cannot be smoothly 

Figure 1  C∞ equivalence.
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approximated by stable maps. This opened a Pandora’s box of 
complications.

Despite the efforts and partial results of many people, the 
answer was not known until 1968 when Mather7–12 devel-
oped an enormous collection of techniques, described in six 
major papers that completely answered the question and in 
some sense killed the subject because there was nothing more 
to say.

Theorem 1. Stable mappings M → P form a dense subset of the 
space C∞(M, P ) if and only if (dim(M ), dim(P )) is represented 
by a red dot (as shown in Figure 2).

4. Topological Stability of Smooth Mappings

During the 1960s, René Thom had been thinking that 
perhaps topologically stable maps might be dense, replacing 
the diffeomorphisms ϕ, ψ in Figure 1 with homeomorphisms. 
At first glance this might seem a hopeless task because a 
homeomorphism may be arbitrarily bad. But Thom devel-
oped a far-reaching vision as to how this might be achieved: 
(1) Develop a theory of stratifications that are topologically lo-
cally trivial along each stratum (see §5); (2) show that the jet 
space has a natural stratification in which the aforementioned 
families of orbits combine into finitely many strata; (3) and 
then show that transversality of the jet Jk(f ) : M → Jk(M, P) 
to these strata, plus the “isotopy lemmas” imply that f is to-
pologically stable. Thom’s publication13,14 of early versions of 
his proposal was followed by his monumental 1969 paper15 
that outlined the full ambitious program.

Mather explained16 to the author that he had a great deal 
of difficulty in making sense of Thom’s outline and he did 
not understand Thom’s definition of the stratification of the 
jet space. In the end, using the notions of finite singularity 

type that he had developed in his papers on smooth stabil-
ity, Mather was able to prove that topologically stable maps 
are dense. His proof differs from Thom’s outline in that Ma-
ther does not use a stratification of the jet space, although 
he initially thought it would be necessary to do so. Mather 
published17 an outline of his proof in 1973 but he was still 
hoping to write a book on the subject. Only the first chap-
ter18 was completed. This chapter, however, had an incredible 
influence on singularity theory and is still the best source on 
the foundations of stratification theory (cf. §5).

Mather later19, citing his inspiration from Thom’s outline, 
used his density theorem to construct a stratification of the 
jet space (different from Thom’s). He showed that topological 
stability of f : M → P is implied by transversality of the jet 
mapping M → Jk(M, P ) to this stratification, so it is a generic 
condition.

In 1976 Christopher Gibson20 and colleages21 published 
a second proof, that used many of Mather’s techniques and 
results but followed Thom’s outline more closely. They make 
use of a stratification of the jet space, possibly different from 
Mather’s. They rely, in an essential way, on the foundational 
work on stratification theory in Mather’s 1970 notes18 which 
were available by then.

5. Stratification Theory

5.1. Stratifications.� Can an analytic set exhibit fractal be-
havior? If f : X → Y is a proper analytic mapping between 
analytic sets, do the fibers fall into finitely many distinct 
homotopy types? These questions were partially put to rest 
when Stanislaw Lojasiewicz triangulated22 semi-analytic sets. 
However, a triangulation of an analytic or algebraic set does 
not display the natural decomposition into more manageable 
pieces that these sets appear to have.

In 1947 Hassler Whitney23 imagined dividing an alge-
braic set into a finite collection of smooth manifolds (or 
strata), that are glued together by some mysterious process. 
This would provide a notion of “equisingularity”: two points 
in the same stratum have the same degree of singularity. Over 
the next twenty years, Whitney made various attempts24–26 
to refine these ideas. During the same period, notions of  
equisingularity were also pursued by Oscar Zariski.27

Eventually Whitney isolated two phenomena, which 
he illustrated with examples, that had been obstructing his 
approach to stratifications of algebraic sets. Whitney’s first 
example is illustrated in Figure 3. It shows that the naive 
approach to stratify an algebraic set does not work. One 
might hope to start with the nonsingular part, then throw it 
away and continue by induction. In Whitney’s example, the 
nonsingular part consists of the two-dimensional surfaces. 
When we remove this part, what remains is a smooth line. 
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Figure 2  C∞ stability range of dimensions.



John N. Mather

4

But one point on this line is special, because of the way the 
two-dimensional part twists around the line. Whitney pro-
posed conditions A and B as criteria that might (correctly) 
force the origin to be considered as a separate stratum. (It 
was later shown that algebraic, analytic, semi-algebraic, semi- 
analytic, subanalytic, and o-minimal sets admit stratifications 
satisfying Whitney’s conditions A and B.)

Whitney’s second example is more worrisome. It is an al-
gebraic subset of Euclidean space such that no decomposi-
tion into smooth manifolds will be locally trivial in the C1 
sense. The variety shown in Figure 4 consists of four ”sheets” 
meeting along the z axis. Three of the sheets are simply a 
product with the z axis, but the fourth sheet twists around 
the axis. Any differentiable flow in the ambient Euclidan 
space, parallel to the z axis, that preserves the first three 
sheets cannot preserve the fourth, because the derivative on 
the normal (two-dimensional) space, at any point on the z 
axis is determined up to a constant factor by the fact that it 
must preserve three lines. So, it cannot move the fourth line. 
Therefore, the homogeneity that is apparent in this example 

can only be realized by a continuous but non-differentiable 
flow. It is this phenomenon (when it occurs in the space of 
jets) that is ultimately responsible for the fact that smoothly 
stable maps do not necessarily form a dense set in the space 
of all smooth mappings, but that topologically stable maps 
do form a dense set.

In his 1969 paper, as part of his plan to understand sta-
bility of mappings, Thom proposed a brilliant and ambitious 
program to solve both of Whitney’s problems: a way to prove 
that a stratification satisfying Whitney’s conditions would be 
topologically locally trivial. The plan is to construct extra data, 
tubular neighborhoods and distance functions for each stra-
tum, and vector fields, smooth on each stratum, that respect 
this data. Although the vector fields are not continuous when 
strata come together, their flows join together to form a con-
tinuous flow.

5.2. �Thom’s outline28 was difficult to follow and Mather 
believed29 that the first step in proving his own results on 
topological stability required a rigorous proof that a Whit-
ney stratified set is topologically locally trivial. Mather’s 1970 
notes,30 the first chapter of his proposed book, accomplish 
this, following a modified version of Thom’s outline, by 
providing precise definitions, careful estimates and double 
inductions.

5.3. �One consequence of the theory is the following local 
structure theorem for stratified spaces. Let X be a stratum in 
a stratified space W. Any point x ∈ X has a basis of neighbor-
hoods homeomorphic, by a stratum preserving homeomorphism, 
smooth on each stratum, to the product Bx(ϵ) × c(Lx ) where Bx(ϵ) 
is an open ball in X, and c(Lx ) is the cone over another stratified 
space, the link  of the stratum X at x ∈ X.

So, any stratification may be understood inductively in 
terms of the topology of the link. This key point is the basis 
for countless applications of the theory.

5.4. �Mather’s 1970 notes have had an enormous impact on 
the mathematical literature. Intersection homology theory 
and stratified Morse theory could not have been developed 
without Mather’s foundational work. The Thom–Mather 
theory of stratifications has become a standard technique in 
algebraic geometry, symplectic topology, representation the-
ory, and even in number theory. Although Mather’s notes 
were not published until forty years after they were written 
and distributed, they have been cited hundreds of times and 
remain the single most complete and accessible approach to 
stratification theory. It is ironic that Mather’s unpublished 
notes have had a greater influence on subsequent mathemati-
cal developments than his monumental work on the stability 
of smooth mappings.Figure 4  xy(y − x)(y − zx) = 0

Figure 3  y2 = x3 − x2z2
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6. Dynamical Systems

6.1. �Mather’s interest in the structural stability of smooth 
mappings is only one aspect of his more general interest in the 
stability of dynamical systems and diffeomorphism groups, 
in which even more complex behavior had been observed. 
After moving to Princeton in 1975 he began to concentrate 
on chaotic phenomena in dynamical systems.

6.2. Celestial Mechanics. �Henri Poincaré had already 
understood that the Newtonian three body problem had 
chaotic behavior even if the solutions to Newton’s equa-
tions remained smooth. In their chapter in Dynamical Sys-
tems, Theory and Application,31 John Mather and Richard 
McGehee gave a surprising example of the Newtonian four 
body problem in which three of the bodies gang up on 
one, tossing it arbitrarily far, in finite time! Solutions to 
the four-body problem, with these particular initial con-
ditions, simply do not exist beyond this critical time. (The 
initial conditions for which this disaster can occur form a 
Cantor set.) Such an alarming result leads us to question 
the stability of the Newtonian world and supports a famous 
1897 conjecture of Painlevé32 that the four-body problem 
exhibits singularities.

Their example is somewhat artificial in that the bodies 
lie on a single one-dimensional axis and collide with elas-
tic collisions. Nevertheless, the example was very influ-
ential. Dmitry Anosov conjectured33 that a non-collision 
example in two dimensions, sufficiently close to the Mather– 
McGeehee example might exist, but this has not yet been  
shown.

The unease generated by the Mather–McGeehee example 
was finally realized in 1992 when Zhihong Xia34 found an 
example in R3 of five bodies under the action of Newtonian 
gravitation, that display unbounded solutions in finite time 
without collisions. (See also the excellent 1995 survey by 
Donald Saari and Zhihong Xia.35)

6.3. Aubry Mather Theory of Twist maps.� As Mather be-
came more and more interested in chaotic systems, he turned 
his attention to the nature of the twist map. His work in this 
area has been highly influential. Twist maps of the cylinder 
arise from many different problems in dynamical systems: in 
solid state physics,36 in the motion of a charged particle in a 
magnetic field (Fermi acceleration), in predator-prey dynam-
ics, in the periodically forced pendulum, in the behavior of 
geodesics on a smooth manifold,37 to name a few. Despite 
their apparent simplicity they are often the source of cha-
otic behavior in very complex systems. (See Theorem 8.3 in 
Golé,38 Theorem 13.2.6 in Katok and Hasselblatt,39 Moser’s 
1986 article,40 or Sorrentino’s book.41)

Let I × S 1 denote a cylinder, where I is an interval [a, b] 
⊂ R or possibly the real line itself, and where S 1 denotes the 
unit circle in the complex plane. A twist map F (x, θ) = (X(x, 
θ), Θ(x, θ)) is a diffeomorphism such that

(1)	 F is orientation preserving and area preserving
(2)	 the “ends” of the cylinder are preserved by F
(3)	 ∂ Θ/∂x > 0.

Item (3) says that the image of each vertical segment 
“twists” around the cylinder in the counterclockwise direc-
tion, as shown in Figure 5.

Twist maps arise, for example, when considering the mo-
tion of a billiard ball on a billiard table with a smooth convex 
boundary, bouncing off the edge of the table with angle of in-
cidence equal to angle of reflection, as described by Mather,42 
Golé,43 Katok and Hasselblatt44 or Moser.45

At such a bounce point p on the boundary, the incoming 
trajectory defines an angle, x with respect to the (positively 
oriented) tangent line at p, so x ∈ [0, π] = I. The position θ 
of the point p may be specified by the arclength from a base-
point to p, which is a number θ ∈ R/LZ = S 1 where L denotes 
the total length of the boundary. The dynamics of the billiard 
ball then describe a twist map F : I × S 1 → I × S 1.

If the billiard table is circular or elliptical then this motion 
is completely integrable, meaning that the trajectories of F lie 
on curves of constant energy in the phase space. Such a curve 
is invariant under the twist map F . The dynamics along such 
a curve may come from periodic orbits or they may be quite 
complicated when the angle θ is irrational.

The theorem of Andrey Kolmogoroff, Vladimir Arnold, 
and Jürgen Moser predicts that for small perturbations of an 
elliptical billiard table (and more generally, for small pertur-
bations of any completely integrable Hamiltonian system) 
these invariant curves will survive. As the perturbation in-
creases the invariant curves disintegrate. Aubry36 and Ma-
ther46 discovered, for arbitrary twist maps, that what remains 
are invariant Cantor sets on which a rotation number can still 
be defined. (The rotation number ρ of a homeomorphism f 

1

Figure 5  Twist map.
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of the circle R/Z is the limit limn→∞
(Fn(x) − x)/n where F : R 

→ R is a lift of f . It is independent of x, is continuous as a 
function of f and is preserved under conjugacy of f .)

For the sake of simplicity, suppose the cylinder is finite 
with I = [a, b] and suppose the twist map F preserves the 
ends of the cylinder. Let α, β denote the rotation numbers 
of the twist map F restricted to the two ends. The following 
statement summarizes some of the results of Aubry47,48 and 
Mather.49

Theorem 2. For every ρ ∈ [a, b] there exists an invariant 
“Aubry–Mather” subset Γρ of the phase space with rotation num-
ber ρ. It lies on the graph of a Liptschitz continuous function 
g : S 1 → I. Every orbit in this subset has rotation number ρ. If 
ρ is rational then this subset is a circle and Γρ contains periodic 
points. If ρ is irrational then every orbit is dense in Γρ, and either 
Γρ is the whole graph of g or it is a Cantor subset of the graph of g.

Because of this last possibility, Aubry and Mather are 
said50 to have found the “missing circles in KAM theory.” In 
a two-dimensional system, the region between two invariant 
circles is necessarily preserved by the map F and such a region 
is “stable.” But in the case of Aubry–Mather sets, orbits can 
escape through the gaps in the Cantor sets.

6.4. Arnold Diffusion. �Suppose H is a completely integra-
ble Hamiltonian function, defined on a four dimensional 
symplectic manifold M. The Hamiltonian flow preserves two 
independent action integrals I1, I2 : M → R whose simulta-
neous level set is typically a two dimensional torus. So the 
three-dimensional level surfaces of H are foliated by invariant 
tori.

Now consider a small perturbation of H. According to 
KAM theory many of these tori are preserved. The region 

John Mather and father. With permission, Princeton University, Office 
of Communications.

between two of these tori is preserved by the flow (hence “sta-
ble”) but is no longer foliated by invariant tori. If dim(M ) > 4 
this argument fails, and Arnold conjectured that even for 
small perturbations, orbits exist on which one of the action 
integrals may change. He gave an example in his 1964 arti-
cle.51 This phenomenon came to be referred to as “Arnold 
diffusion” (even though it is not related to the usual notion 
of diffusion) because it represents a loss of stability. Kaloshin 
and Levi52 give a long list of attempts to prove this conjecture.

In 2003, Mather announced53 a proof of this conjecture. 
He worked very hard, over a period of years to complete this 
proof. In 2009 he gave a long series of lectures at the Univer-
sity of Maryland about his ideas to prove Arnold’s Conjec-
ture. For two months, he visited the University of Maryland 
each week, and gave an intense three-hour lecture. Although 
there were many essential missing ideas, Mather’s notes and 
lectures became important ingredients in the final proof by 
Vadim Kaloshin and Ke Zhang.54 Mather passed away before 
the book appeared, but he took great satisfaction in following 
its development.
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