Edward Egelman is a biophysicist known for his work on the structure and function of protein and nucleoprotein polymers. He developed the algorithm that is now widely used in cryo-electron microscopy for the three-dimensional reconstruction of helical filaments and tubes. His research has ranged from studies of actin to bacterial pili to viruses that infect hosts living in nearly boiling acid. Egelman was born in New York and graduated from Brandeis University in 1976 with a B.A. in physics. He started as a Ph.D. student in experimental high energy physics at Harvard, but changed fields and received his Ph.D. from Brandeis University in 1982 in biophysics. He was a Jane Coffin Childs postdoctoral fellow at the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, and became an Assistant Professor at Yale University in 1984. In 1989 he moved to the University of Minnesota where he was an Associate and Full Professor, and in 1999 moved to the University of Virginia where he is now a Harrison Distinguished Professor. He has been president of the Biophysical Society and Editor-in-Chief of Biophysical Journal, and is a Fellow of both the Biophysical Society and the American Academy of Microbiology.

Research Interests

The Egelman laboratory uses structural biology to understand the function and evolution of protein and nucleoprotein polymers. The main method employed is cryo-electron microscopy, which now allows for near-atomic resolution of biological polymers almost routinely. While Egelman started as a graduate student looking at F-actin, the methods he helped develop have allowed for high resolution structural studies of many other polymers. He has been working on pili of pathogenic bacteria, which are an essential virulence factor. What has been surprising is that small numbers of amino acid changes can lead to large variations in quaternary structure, something that he has termed the lability of quaternary structure. This can be seen as a mechanism in evolution for the amplification of relatively small numbers of substitutions in the primary sequence of proteins. He has gone on using in vitro systems with peptides to show how dramatic these changes in quaternary structure can be. His laboratory has also been interested in protein polymers that resist the most extreme environments, such as pili on the surface of archaea that live in nearly boiling acid. His studies of viruses that infect such hyperthermophilic acidophiles have revealed a packing of DNA in the A-form which appears to afford protection against such harsh conditions.

Membership Type


Election Year


Primary Section

Section 29: Biophysics and Computational Biology